

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368

Cei

COMP

Kaycha Labs

. FTH- Skitty G WF 3.5g (1/8 oz) FTH-Skitty G Matrix: Flower Type: Flower-Cured

<complex-block> Surce Facility is zolfo Springs Cutility is zolfo Springs Collingiant GSB 01397364 S9 Batch Date: 3006/ Sample Size Accelve 315 gring Retail Product Size: 35 gring Servings: Servin</complex-block>		, FL, 333 368-7664										lype: Flowe	er-Cured	
For design of the state of							na	lys	sis	Cult	ivation Fa	t/Lot ID: H Batc acility: Zol	IYB-SG-03 h#: 8715 45 fo Springs	2924-CO14 528 6517 374 Cultivatio
Apr 09, 2024 FLUENT Store Rescutive Drive Samper 16, 33609, US PASSED Image: Constraint of the store of the	COM	FLUEN	FTH-Skitty 94/05/2024	LUENT 406005-002		L				S	ource Fa Se	cility : Zol ed to Sale Sample Siz To Retail Retail	fo Springs # 6589 019 Batch Da ze Receive tal Amoun Product Si Serving Si Order Sampl Complet	Processin 5 Cultivatio 9 7364 591 11: 03/06/2 11: 1372 unit 12: 3.5 gran 12: 3.5
Amps, FL, 33609, 05 Pages 1 of 5 AFFETY RESULTS Misc. Image: Passed Ima				JENT									ΡΑ	SSE
$ \begin{array}{c} \overbrace{\begin{tinzbuilde}{1.5mm} \\ \hline \end{tinzbuilde}{1.5mm} \\ \hline \end{tinzbuilde}{1$											Pa	ges 1 of	5	
Pesticides PASSED Heavy Metals PASSED Microbials PASSED Mycotoxins PASSED Residuals Solvents NOT TESTED Filth PASSED Water Activity PASSED Moisture PASSED Terpenes TESTED Image: Comma binoid Total THC 2,7,1,13,5,0% Dry Weight Total CBD O.O,07,4% Dry Weight Total CBD O.O,07,4% Dry Weight Total Cannabinoids 31.8,89% Dry Weight Total CBD O.O,06,4% Dry Weight Total CBD O.O,06,4% Dry Weight Total CBD D.O,06,4% Dry Weight Total CANNADIA %<	AFETY I	RESULTS												MISC.
Pesticides PASSED Heavy Metals PASSED Microbials PASSED Mycotoxins PASSED Residuals Solvents NOT TESTED Filth PASSED Water Activity PASSED Moisture PASSED Terpenes TESTED Image: Comma binoid Total THC 27, 113,55% Dry Weight Total CBD O.07,4% Dry Weight Total CBD O.07,4% Dry Weight Total CBD O.07,4% Dry Weight Total Cannabinoids 31.8,89% Dry Weight Total Cannabinoids 31.8,89% Dry Weight Image: Comma binoid Microbials Total CBD O.07,4% Dry Weight Image: Comma binoid Microbials Destric Comma binoid Microbials Destric Cannabinoids Dry Weight Image: Comma binoid Microbials Total Cannabinoids Microbials Image: Comma binoid Microbials Total CBD O.07,4% Dry Weight Destric Cannabinoid Microbials Destric Microbials Destric Microbia	E م	t ∫	Hg	}	€Ę,	ð	0	Ĩ			(\bigcirc)	(\bigcirc
Image: Second biology Cannabinoids Cannabinoids Cannabinoids Image: Second biology Image: Second biology <td>Pestic</td> <td>cides I</td> <td>-</td> <td></td> <td></td> <td></td> <td>D</td> <td>Solvents</td> <td>PAS</td> <td></td> <td></td> <td>,</td> <td></td> <td>Terpenes TESTED</td>	Pestic	cides I	-				D	Solvents	PAS			,		Terpenes TESTED
Wight Price Total THC 27,13,50% by Weight Total CBD 0,07,40% by Weight Total CBD 0,07,40% by Weight Total Cannabinoids 31,8,8,9% by Weight Image: Section of the secti	Д̈́	Canna	abinoid										P	ASSE
Market		A A	27.1	35%) (0.074	%		K CANANA AND AND AND AND AND AND AND AND AN	31	L.89% reight Total TH	о іс
Marked by: Balyzed by: bis 5, 383, 00-001 CBD CBD CBD CBD CBD CBD CBD CBD CBC CBC CBD CBDV CBC CBDV CBC Total Cannabinoids 27,496% 962.36 mg /Container ND 0.001				_										
% 0.386 26.238 ND 0.074 0.040 0.096 0.661 ND ND ND 0.041 27.496% 962.36 mg /Container mg/unit 13.51 918.33 ND 2.59 1.4 3.36 21.735 ND ND ND 1.435 962.36 mg /Container LOD 0.001			н										0.064	%
mg/unit 13.51 918.33 ND 2.59 1.4 3.36 21.735 ND ND ND 1.435 962.36 mg / Container LOD 0.001 <th< td=""><td><i></i></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	<i></i>													
% %	mg/unit	13.51	918.33	ND	2.59	1.4	3.36	21.735	ND	ND	ND	1.435		
665, 585, 404 0.2078g 04/08/24 09:59:27 1665,3335 nalysis Method : SOP.T.40.031, SOP.T.30.031 Reviewed On : 04/09/24 11:51:30 165,3335 nalytical Batch : DAOT1337POT Reviewed On : 04/09/24 11:51:30 165,3355 nalyzed Date : 04/08/24 10:11:37 Batch Date : 04/06/24 19:38:58 165,3355 ilutton : 400 Ilutton : 92924,R01; 606823.05; 030824.R01 Ilutton : 92924,R01; 060823.05; 030824.R01	LOD												As Rece	ived
Reviewed On: 04/09/24 11:51:30 strumet Used: DA-LC-002 Batch Date: 04/06/24 19:38:58 halyzed Date: 04/06/24 19:38:58 1000000000000000000000000000000000000	65, 585, 404		1, SOP.T.30.031											
ilution : 400 eagent : 032924.R01; 060823.05; 030824.R01 onsumables : 947.100; LLS-00-0005; 280670723; R1KB14270	nalytical Bato strument Use	ch : DA071337P0 ed : DA-LC-002	ТС											
ipette : DA-079; DA-108; DA-078	ilution : 400 leagent : 032 consumables :	924.R01; 06082 : 947.100; LLS-0	3.05; 030824.R01 0-0005; 28067072											

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/09/24

FTH- Skitty G WF 3.5g (1/8 oz) FTH-Skitty G Matrix : Flower Type: Flower-Cured

PASSED

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Terpenes

Certificate of Analysis

FLUENT

5540 W. Executive Drive Tampa, FL, 33609, US Telephone: (305) 900-6266 Email: Taylor.Jones@getfluent.com Sample : DA40406005-002 Harvest/Lot ID: HYB-SG-032924-C0142 Batch# : 8715 4528 6517 Sample S

3745 Sampled : 04/06/24 Ordered : 04/06/24 Sample Size Received : 31.5 gram Total Amount : 1372 units Completed : 04/09/24 Expires: 04/09/25 Sample Method : SOP.T.20.010

Page 2 of 5

TESTED

erpenes	LOD (%)	mg/unit	%	Result (%)	Terpenes	LOD (%)	mg/unit	t %	Result (%)
DTAL TERPENES	0.007	77.81	2.223		SABINENE	0.007	ND	ND	
MONENE	0.007	23.49	0.671		SABINENE HYDRATE	0.007	ND	ND	
ETA-MYRCENE	0.007	15.65	0.447		VALENCENE	0.007	ND	ND	
ETA-CARYOPHYLLENE	0.007	8.19	0.234		ALPHA-CEDRENE	0.007	ND	ND	
NALOOL	0.007	6.62	0.189		ALPHA-PHELLANDRENE	0.007	ND	ND	
ETA-PINENE	0.007	4.52	0.129		ALPHA-TERPINENE	0.007	ND	ND	
LPHA-TERPINOLENE	0.007	3.68	0.105		CIS-NEROLIDOL	0.007	ND	ND	
LPHA-HUMULENE	0.007	3.40	0.097		GAMMA-TERPINENE	0.007	ND	ND	
ENCHYL ALCOHOL	0.007	2.59	0.074		Analyzed by:	Weight:	Extra	ction date:	Extracted by:
LPHA-PINENE	0.007	2.45	0.070		1879, 3605, 585, 4044	0.9532g		6/24 15:15:06	
UAIOL	0.007	2.07	0.059		Analysis Method : SOP.T.30.061A.FL, SOP	.T.40.061A.FL			
DTAL TERPINEOL	0.007	1.68	0.048		Analytical Batch : DA071331TER				/09/24 12:23:39
PHA-BISABOLOL	0.007	1.30	0.037		Instrument Used : DA-GCMS-009 Analyzed Date : N/A		Batc	n pate : 04/0	6/24 13:40:55
ANS-NEROLIDOL	0.007	1.30	0.037		Dilution : 10				
ARNESENE	0.001	0.91	0.026		Reagent : 022224.01				
CARENE	0.007	ND	ND		Consumables : 947.109; 230613-634-D; 0	E0123			
DRNEOL	0.013	ND	ND		Pipette : DA-063				
MPHENE	0.007	ND	ND		Terpenoid testing is performed utilizing Gas Ch	romatography Mass Spectro	metry. For all	Flower sample	es, the Total Terpenes % is dry-weight corrected.
MPHOR	0.007	ND	ND						
RYOPHYLLENE OXIDE	0.007	ND	ND						
EDROL	0.007	ND	ND						
UCALYPTOL	0.007	ND	ND						
NCHONE	0.007	ND	ND						
ERANIOL	0.007	ND	ND						
ERANYL ACETATE	0.007	ND	ND						
EXAHYDROTHYMOL	0.007	ND	ND						
OBORNEOL	0.007	ND	ND						
OPULEGOL	0.007	ND	ND						
EROL	0.007	ND	ND						
CIMENE	0.007	ND	ND						
CIMENE									

Total (%)

2.223

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

04/09/24

FTH- Skitty G WF 3.5g (1/8 oz) FTH-Skitty G Matrix : Flower Type: Flower-Cured

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

FLUENT

5540 W. Executive Drive Tampa, FL, 33609, US Telephone: (305) 900-6266 Email: Tavlor.lones@qetfluent.com Sample : DA40406005-002 Harvest/Lot ID: HYB-SG-032924-C0142

Batch#:8715 4528 6517 3745 Sampled:04/06/24 Ordered:04/06/24 Sample Size Received : 31.5 gram Total Amount : 1372 units Completed : 04/09/24 Expires: 04/09/25 Sample Method : SOP.T.20.010

Page 3 of 5

Pesticides

Pesticide	LOD	Units	Action Level	Pass/Fail	Result	Pesticide	LOD	Units	Action Level	Pass/Fail	Result
TOTAL CONTAMINANT LOAD (PESTICIDES)	0.010	ppm	5	PASS	ND	OXAMYL	0.010	ppm	0.5	PASS	ND
TOTAL DIMETHOMORPH	0.010		0.2	PASS	ND	PACLOBUTRAZOL	0.010	ppm	0.1	PASS	ND
TOTAL PERMETHRIN	0.010	ppm	0.1	PASS	ND	PHOSMET		ppm	0.1	PASS	ND
TOTAL PYRETHRINS	0.010	ppm	0.5	PASS	ND	PIPERONYL BUTOXIDE		ppm	3	PASS	ND
TOTAL SPINETORAM	0.010	ppm	0.2	PASS	ND			ppm	0.1	PASS	ND
TOTAL SPINOSAD	0.010	ppm	0.1	PASS	ND	PRALLETHRIN				PASS	ND
ABAMECTIN B1A	0.010	ppm	0.1	PASS	ND	PROPICONAZOLE		ppm	0.1		
ACEPHATE	0.010	ppm	0.1	PASS	ND	PROPOXUR	0.010		0.1	PASS	ND
ACEQUINOCYL	0.010	ppm	0.1	PASS	ND	PYRIDABEN		ppm	0.2	PASS	ND
ACETAMIPRID	0.010		0.1	PASS	ND	SPIROMESIFEN	0.010	ppm	0.1	PASS	ND
ALDICARB	0.010		0.1	PASS	ND	SPIROTETRAMAT	0.010	ppm	0.1	PASS	ND
AZOXYSTROBIN	0.010	ppm	0.1	PASS	ND	SPIROXAMINE	0.010	ppm	0.1	PASS	ND
BIFENAZATE	0.010	P.P.	0.1	PASS	ND	TEBUCONAZOLE	0.010	ppm	0.1	PASS	ND
BIFENTHRIN	0.010		0.1	PASS	ND	THIACLOPRID	0.010	maa	0.1	PASS	ND
BOSCALID	0.010		0.1	PASS	ND	THIAMETHOXAM	0.010		0.5	PASS	ND
CARBARYL	0.010		0.5	PASS	ND	TRIFLOXYSTROBIN	0.010		0.1	PASS	ND
CARBOFURAN	0.010		0.1	PASS	ND		0.010		0.15	PASS	ND
CHLORANTRANILIPROLE	0.010		1	PASS	ND	PENTACHLORONITROBENZENE (PCNB) *	0.010		0.1	PASS	ND
CHLORMEQUAT CHLORIDE	0.010		1	PASS	ND	PARATHION-METHYL *					
CHLORPYRIFOS	0.010		0.1	PASS	ND	CAPTAN *	0.070		0.7	PASS	ND
CLOFENTEZINE	0.010		0.2	PASS	ND	CHLORDANE *	0.010		0.1	PASS	ND
COUMAPHOS	0.010		0.1	PASS	ND	CHLORFENAPYR *	0.010	PPM	0.1	PASS	ND
DAMINOZIDE	0.010		0.1	PASS	ND	CYFLUTHRIN *	0.050	PPM	0.5	PASS	ND
DIAZINON	0.010		0.1	PASS	ND	CYPERMETHRIN *	0.050	PPM	0.5	PASS	ND
DICHLORVOS	0.010		0.1	PASS	ND	Analyzed by: Weight:	Extrac	tion date:		Extracted	bv:
DIMETHOATE	0.010	T P	0.1	PASS	ND	3379, 585, 4044 0.8999g	04/08/2	24 15:15:05		3379	
ETHOPROPHOS	0.010		0.1		ND	Analysis Method : SOP.T.30.101.FL (Gainesville)	, SOP.T.30.10	2.FL (Davie),	SOP.T.40.101.	FL (Gainesville)	l,
ETOFENPROX	0.010	1.1.	0.1	PASS	ND	SOP.T.40.102.FL (Davie)					
ETOXAZOLE	0.010		0.1	PASS PASS	ND	Analytical Batch : DA071364PES Instrument Used : DA-LCMS-003 (PES)			n:04/09/24 1 :04/08/24 09:		
FENHEXAMID	0.010	P.P.	0.1	PASS	ND	Analyzed Date : 04/08/24 15:18:46		Datch Date	:04/00/24 09.	55.45	
FENOXYCARB	0.010		0.1	PASS	ND ND	Dilution : 250					
FENPYROXIMATE	0.010 0.010		0.1	PASS	ND	Reagent : 040324.R37; 040324.R03; 040224.R4	3; 032824.R0	1; 031824.R0	2; 040324.R0	1; 040423.08	
FIPRONIL FLONICAMID	0.010		0.1	PASS	ND	Consumables : 326250IW					
	0.010	1.1.	0.1	PASS	ND	Pipette : DA-093; DA-094; DA-219					
FLUDIOXONIL HEXYTHIAZOX	0.010		0.1	PASS	ND	Testing for agricultural agents is performed utilizing accordance with F.S. Rule 64ER20-39.	g Liquid Chron	natography Tri	ple-Quadrupole	e Mass Spectron	netry in
IMAZALIL	0.010		0.1	PASS	ND		Factors and	ion date:		Fortune action of	h
IMIDACLOPRID	0.010		0.4	PASS	ND	Analyzed by: Weight: 450, 585, 4044 0.8999g		4 15:15:05		Extracted 3379	by:
KRESOXIM-METHYL	0.010		0.1	PASS	ND	Analysis Method :SOP.T.30.151.FL (Gainesville)			SOP.T.40.15		
MALATHION	0.010		0.2	PASS	ND	Analytical Batch : DA071366VOL		eviewed On :			
METALAXYL	0.010		0.1	PASS	ND	Instrument Used : DA-GCMS-001	Ba	atch Date :04	1/08/24 09:36:	15	
METHIOCARB	0.010		0.1	PASS	ND	Analyzed Date :04/08/24 16:53:16					
METHOCARD	0.010		0.1	PASS	ND	Dilution : 250	001004 500				
MEVINPHOS	0.010		0.1	PASS	ND	Reagent: 040224.R43; 040423.08; 031824.R05 Consumables: 326250IW: 14725401	; U31824.R06)			
MYCLOBUTANIL	0.010		0.1	PASS	ND	Pipette : DA-080; DA-146; DA-218					
NALED	0.010		0.25	PASS	ND	Testing for agricultural agents is performed utilizing	a Gas Chroma	tography Triple	e-Ouadrupole N	lass Spectrome	trv in
	0.010	- P	0.20			accordance with F.S. Rule 64ER20-39.	,	- 2 - P 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			,

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Standard Deviation. Limit of Detection (LOD) and Limit of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/09/24

PASSED

PASSED

FTH- Skitty G WF 3.5g (1/8 oz) FTH-Skitty G Matrix : Flower Type: Flower-Cured

PASSED

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

FLUENT

5540 W. Executive Drive Tampa, FL, 33609, US Telephone: (305) 900-6266 Email: Taylor.Jones@getfluent.com Sample : DA40406005-002 Harvest/Lot ID: HYB-SG-032924-C0142

Batch# : 8715 4528 6517 3745 Sampled : 04/06/24 Ordered : 04/06/24 Sample Size Received : 31.5 gram Total Amount : 1372 units Completed : 04/09/24 Expires: 04/09/25 Sample Method : SOP.T.20.010

|--|

Ç,	Micr	obia				PAS	SED	လို့	Му	/cotox	ins			PAS	SED
Analyte			LOD	Units	Result	Pass / Fail	Action Level	Analyte			LOD	Units	Result	Pass / Fail	Action Level
ASPERGILLUS	S TERREUS				Not Present	PASS	Level	AFLATOXIN	B2		0.002	ppm	ND	PASS	0.02
ASPERGILLUS	S NIGER				Not Present	PASS		AFLATOXIN	B1		0.002	ppm	ND	PASS	0.02
ASPERGILLUS	S FUMIGATU	JS			Not Present	PASS		OCHRATOXI	A I		0.002	ppm	ND	PASS	0.02
ASPERGILLUS					Not Present	PASS		AFLATOXIN			0.002	ppm	ND	PASS	0.02
SALMONELLA		GENE			Not Present	PASS		AFLATOXIN	G2		0.002	ppm	ND	PASS	0.02
ECOLI SHIGE)	10	CFU/g	Not Present 90	PASS PASS	100000	Analyzed by: 3379, 585, 404	4	Weight: 0.8999g	Extraction d 04/08/24 15			Extracted 3379	by:
Analyzed by: 3390, 585, 404		Veight:).9281q		tion date: /24 13:09:35		xtracted b	y:			.30.101.FL (Gai	inesville), SOP.T	.40.101.FL	Gainesv (Gainesv	ille),	
nalysis Metho nalytical Batc	d:SOP.T.40.	056C, SOP.			0.209.FL	d On : 04/09	9/24	Analytical Bate Instrument Us Analyzed Date	:h : DA071 ed : N/A	365MYC	Revie	wed On : 0 Date : 04/			
nstrument Use sotemp Heat E DA-049,Fisher 1 Analyzed Date Dilution : N/A	Block DA-020, Scientific Isot	,fisherbrand temp Heat B	l Isotem	o Heat Block		te:04/06/2	24	Dilution : 250 Reagent : 040 040423.08 Consumables : Pipette : DA-0	326250IV	V	40224.R43; 032	824.R01; C)31824.R0	2; 04032	4.R01;
teagent : 0326 consumables : 'ipette : N/A malyzed by: 390, 585, 404	7569003078 v		Extrac	091523.45 :tion date: /24 13:09:35		Extracted by	y:	Mycotoxins test accordance wit	h F.S. Rule		ography with Tripl	e-Quadrupo		ectrometry PAS	
nalysis Metho nalytical Batc nstrument Use nalyzed Date	d:SOP.T.40. h:DA071319	208 (Gaines TYM	sville), S	OP.T.40.209 Revie		9/24 11:43		Metal			LOD	Units	Result	Pass / Fail	Action Level
ilution : N/A									AMINAN	T LOAD META		ppm	ND	PASS	1.1
eagent : 0326		24.07; 0318	24.R19					ARSENIC CADMIUM			0.020	ppm ppm	ND ND	PASS PASS	0.2 0.2
onsumables : ipette : N/A	N/A							MERCURY			0.020	ppm	ND	PASS	0.2
	mold testing is	norformed ut	ilining MD	N and traditio	nal culture based	d to choice oc	in	LEAD			0.020	ppm	ND	PASS	0.5
ccordance with			.mzmg ⊮r		nai culture baset	a techniques	111	Analyzed by: 1022, 585, 404	4	Weight: 0.2218g	Extraction da 04/06/24 14:			xtracted 1 056,1022	y:
								Analysis Metho Analytical Bato Instrument Us Analyzed Date	:h : DA071 ed : DA-IC	PMS-004	Review	ed On : 04 Date : 04/0			
								032824.R06	179436;	34623011; 210	40524.R11; 040 0508058	824.R16; C)40824.R1	7; 02052	4.01;
								Pipette : DA-0	61; DA-19 nalysis is p	1; DA-216	nductively Coupled	l Plasma Ma	iss Spectror	netry in ac	cor

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Standard Deviation. Limit of Detection (LOD) and Limit of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/09/24

FTH- Skitty G WF 3.5g (1/8 oz) FTH-Skitty G Matrix : Flower Type: Flower-Cured

Page 5 of 5

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

PASSED

FLUENT 5540 W. Executive Drive Tampa, FL, 33609, US Telephone: (305) 900-6266 Email: Taylor.Jones@aetfluent.com
 Sample : DA40406005-002

 Harvest/Lot ID: HYB-SG-032924-C0142

 Batch# : 8715 4528 6517
 Sample S

 3745
 Total American Amer

Sampled : 04/06/24 Ordered : 04/06/24 Sample Size Received : 31.5 gram Total Amount : 1372 units Completed : 04/09/24 Expires: 04/09/25 Sample Method : SOP.T.20.010

Filth/Foreign Material

Ρ	Δ	S	SI	Ξſ	

Analyte Filth and Foreign	Material	LOD 0.100	Units %	Result ND	P/F PASS	Action Level	Analyte Moisture Content		LOD 1.00	Units %	Result 13.78	P/F PASS	Action Level
Analyzed by: 1879, 585, 4044	Weigh NA	t:	Extractio N/A	n date:	Extra N/A	acted by:	Analyzed by: 4444, 585, 4044	Weight: 0.506g		Atraction 4/07/24 1			tracted by: 44
Analysis Method : SC Analytical Batch : DA Instrument Used : Fil Analyzed Date : 04/0	071353FIL h/Foreign Materia	al Micro	oscope			/24 20:41:02 4 20:08:19	Analysis Method : SOP.T. Analytical Batch : DA071 Instrument Used : DA-003 Analyzed Date : 04/07/24	324MOI 3 Moisture A	Analyzei		Reviewed On Batch Date : (
Dilution : N/A Reagent : N/A Consumables : N/A Pipette : N/A							Dilution : N/A Reagent : 092520.50; 02 Consumables : N/A Pipette : DA-066	0124.02					
Filth and foreign materi technologies in accorda				pection utilizi	ng naked ey	e and microscope	Moisture Content analysis ut	ilizing loss-or	n-drying	technology	in accordance	with F.S. Ru	le 64ER20-39.
	Nater Ad	ctiv	ity		PA	SSED							

Analyte Water Activity	-	.0D).010	Units aw	Resu 0.1	ilt 596	P/F PASS	Action Level 0.65
Analyzed by: 4444, 585, 4044	Weight: 1.257g		traction d /07/24 14				tracted by: 144
Analysis Method : SOP Analytical Batch : DAO Instrument Used : DA2 Analyzed Date : 04/07	71325WAT 256 Rotronic Hyg	roPalr	n			:04/09/2 04/06/24	4 10:10:43 12:34:52
Dilution : N/A Reagent : 022024.29 Consumables : PS-14 Pipette : N/A							

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/09/24