

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

Kaycha Labs

Everglade Haze Cartridge Concentrate 1g (90%) Everglade Haze Matrix: Derivative Type: Distillate

Sample:DA40306002-003 Harvest/Lot ID: 6455 9783 3491 9345 Batch#: 6455 9783 3491 9345 Cultivation Facility: Tampa Cultivation Processing Facility : Tampa Processing Source Facility : Tampa Cultivation Seed to Sale# 3822 9798 7695 0065 Batch Date: 11/22/23 Sample Size Received: 16 gram Total Amount: 1942 units Retail Product Size: 1 gram Ordered: 03/05/24 Sampled: 03/06/24 Completed: 03/08/24 Sampling Method: SOP.T.20.010

PASSED

Pages 1 of 6

Mar 08, 2024 | FLUENT

Tampa, FL, 33609, US

PRODUCT IMAGE SAFETY RESULTS MISC. ٦a Pesticides Heavy Metals Microbials **Mycotoxins Residuals Solvents** Filth Water Activity Moisture Terpenes PASSED PASSED PASSED PASSED TESTED PASSED PASSED PASSED PASSED Cannabinoid Total CBD Total THC **Total Cannabinoids** 89.208% 0.326% 94.458% Total THC/Container : 892.08 mg Total Cannabinoids/Container : 944.58 Total CBD/Container : 3.26 mg mg THCV тнса CBC D9-THC CBD CRDA D8-THC CBG CRGA CBN CRDV 1,220 89.035 0.198 0.326 ND 0.320 1.757 ND 0.727 ND 0.875 890.35 3.20 ND 12.20 7.27 1.98 3.26 ND 17.57 ND 8.75 ma/unit 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 % % % % % % % % % % % Analyzed by: 3605, 1665, 53, 1440 Weight: 0.1091g Extraction date: 03/06/24 13:50:21 Extracted by: 3335,3605 Analysis Method : SOP.T.40.031, SOP.T.30.031 Analytical Batch : DA070147POT Instrument Used : DA-LC-007 Reviewed On : 03/08/24 13:53:41 Batch Date : 03/06/24 09:56:06 Analyzed Date : 03/06/24 13:50:25 Dilution: 400 Reagent : 022724.R01; 060723.24; 021424.R04 Consumables : 947.109; 34623011; CE0123; R1KB14270 Pipette : DA-079; DA-108; DA-078 rum cannabinoid analysis utilizing High Performance Liguid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39 Full Spe

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/08/24

Everglade Haze Cartridge Concentrate 1g (90%) Everglade Haze Matrix : Derivative

PASSED

TESTED

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

FLUENT

5540 W. Executive Drive Tampa, FL, 33609, US Telephone: (305) 900-6266 Email: Taylor.Jones@getfluent.com
 Sample : DA40306002-003

 Harvest/Lot ID: 6455 9783 3491

 Batch# : 6455 9783 3491

 9345

Sampled : 03/06/24 Ordered : 03/06/24 Sample Size Received : 16 gram Total Amount : 1942 units Completed : 03/08/24 Expires: 03/08/25 Sample Method : SOP.T.20.010

Page 2 of 6

Type: Distillate

Terpenes

Ferpenes	LOD (%)	mg/unit	%	Result (%)	Terpenes		LOD (%)	mg/unit	%	Result (%)	
TOTAL TERPENES	0.007	11.29	1.129		SABINENE HYDRATE		0.007	ND	ND		
ALPHA-TERPINOLENE	0.007	3.78	0.378		ALPHA-CEDRENE		0.007	ND	ND		
BETA-CARYOPHYLLENE	0.007	1.81	0.181		ALPHA-HUMULENE		0.007	ND	ND		
BETA-MYRCENE	0.007	1.08	0.108		ALPHA-PHELLANDRENE		0.007	ND	ND		
IMONENE	0.007	0.94	0.094		ALPHA-TERPINENE		0.007	ND	ND		
DCIMENE	0.007	0.82	0.082		CIS-NEROLIDOL		0.007	ND	ND		
LPHA-BISABOLOL	0.007	0.69	0.069		GAMMA-TERPINENE		0.007	ND	ND		
ALENCENE	0.007	0.60	0.060		TRANS-NEROLIDOL		0.007	ND	ND		
BETA-PINENE	0.007	0.44	0.044		Analyzed by:	Weight:		Extraction da	te:		Extracted by:
INALOOL	0.007	0.42	0.042		1665, 53, 1440	0.3345g		03/08/24 09:3			1665
-CARENE	0.007	0.25	0.025		Analysis Method : SOP.T.30.06						
LPHA-PINENE	0.007	0.25	0.025		Analytical Batch : DA070166T					03/08/24 12:03:18	
ENCHYL ALCOHOL	0.007	0.21	0.021		Instrument Used : DA-GCMS-0 Analyzed Date : N/A	18		Batch	Date : 0.	3/06/24 11:36:09	
OTAL TERPINEOL	0.007	<0.20	< 0.020		Dilution : 10						
ORNEOL	0.013	ND	ND		Reagent : N/A						
AMPHENE	0.007	ND	ND		Consumables : N/A						
AMPHOR	0.007	ND	ND		Pipette : N/A						
ARYOPHYLLENE OXIDE	0.007	ND	ND		Terpenoid testing is performed uti	izing Gas Chromatography I	Mass Spec	trometry. For all	Flower san	nples, the Total Terpenes % is	dry-weight corrected.
EDROL	0.007	ND	ND								
UCALYPTOL	0.007	ND	ND								
ARNESENE	0.001	ND	ND								
ENCHONE	0.007	ND	ND								
GERANIOL	0.007	ND	ND								
GERANYL ACETATE	0.007	ND	ND								
GUAIOL	0.007	ND	ND								
IEXAHYDROTHYMOL	0.007	ND	ND								
SOBORNEOL	0.007	ND	ND								
SOPULEGOL	0.007	ND	ND								
IEROL	0.007	ND	ND								
PULEGONE	0.007	ND	ND								
		ND	ND								
SABINENE	0.007	ND	ND								

Total (%)

1.129

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/08/24

Type: Distillate

_____ Everglade Haze Cartridge Concentrate 1g (90%) Everglade Haze Matrix : Derivative

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

FLUENT

5540 W. Executive Drive Tampa, FL, 33609, US Telephone: (305) 900-6266 Email: Taylor.lones@getfluent.com Sample : DA40306002-003 Harvest/Lot ID: 6455 9783 3491 9345

Batch#: 6455 9783 3491 9345 Sampled : 03/06/24 Ordered : 03/06/24

Sample Size Received : 16 gram Total Amount : 1942 units Completed : 03/08/24 Expires: 03/08/25 Sample Method : SOP.T.20.010

Page 3 of 6

R 0

Pesticides

Pesticide	LOD	Units	Action Level	Pass/Fail	Result	Pesticide		LOD	Units	Action Level	Pass/Fail	Result
TOTAL CONTAMINANT LOAD (PESTICIDES)		ppm	5	PASS	ND	OXAMYL		0.010	ppm	0.5	PASS	ND
TOTAL DIMETHOMORPH		ppm	0.2	PASS	ND	PACLOBUTRAZOL		0.010	ppm	0.1	PASS	ND
TOTAL PERMETHRIN	0.010	ppm	0.1	PASS	ND	PHOSMET		0.010		0.1	PASS	ND
TOTAL PYRETHRINS		ppm	0.5	PASS	ND	PIPERONYL BUTOXIDE		0.010		3	PASS	ND
FOTAL SPINETORAM	0.010	ppm	0.2	PASS	ND			0.010		0.1	PASS	ND
TOTAL SPINOSAD		ppm	0.1	PASS	ND	PRALLETHRIN					PASS	ND
ABAMECTIN B1A		ppm	0.1	PASS	ND	PROPICONAZOLE		0.010		0.1		
ACEPHATE		ppm	0.1	PASS	ND	PROPOXUR		0.010		0.1	PASS	ND
ACEQUINOCYL	0.010	ppm	0.1	PASS	ND	PYRIDABEN		0.010	ppm	0.2	PASS	ND
ACETAMIPRID		ppm	0.1	PASS	ND	SPIROMESIFEN		0.010	ppm	0.1	PASS	ND
ALDICARB		ppm	0.1	PASS	ND	SPIROTETRAMAT		0.010	ppm	0.1	PASS	ND
AZOXYSTROBIN		ppm	0.1	PASS	ND	SPIROXAMINE		0.010	ppm	0.1	PASS	ND
BIFENAZATE		ppm	0.1	PASS	ND	TEBUCONAZOLE		0.010	ppm	0.1	PASS	ND
BIFENTHRIN		ppm	0.1	PASS	ND	THIACLOPRID		0.010	ppm	0.1	PASS	ND
BOSCALID		ppm	0.1	PASS	ND	THIAMETHOXAM		0.010		0.5	PASS	ND
CARBARYL		ppm	0.5	PASS	ND	TRIFLOXYSTROBIN		0.010		0.1	PASS	ND
CARBOFURAN		ppm	0.1	PASS	ND			0.010		0.15	PASS	ND
CHLORANTRANILIPROLE		ppm	1	PASS	ND	PENTACHLORONITROBENZENE (P	'CNB) *					
CHLORMEQUAT CHLORIDE		ppm	1	PASS	ND	PARATHION-METHYL *		0.010		0.1	PASS	ND
CHLORPYRIFOS		ppm	0.1	PASS	ND	CAPTAN *		0.070		0.7	PASS	ND
CLOFENTEZINE		ppm	0.2	PASS	ND	CHLORDANE *		0.010		0.1	PASS	ND
COUMAPHOS		ppm	0.1	PASS	ND	CHLORFENAPYR *		0.010	PPM	0.1	PASS	ND
DAMINOZIDE		ppm	0.1	PASS	ND	CYFLUTHRIN *		0.050	PPM	0.5	PASS	ND
DIAZINON		ppm	0.1	PASS	ND	CYPERMETHRIN *		0.050	PPM	0.5	PASS	ND
DICHLORVOS		ppm	0.1	PASS	ND	Analyzed by:	Weight:	Extrac	tion date:		Extracted	d by:
DIMETHOATE		ppm	0.1	PASS	ND	3379, 1665, 1440	0.279g		24 17:40:36		3379) -
THOPROPHOS		ppm	0.1	PASS	ND	Analysis Method : SOP.T.30.101.FL	(Gainesville), S	OP.T.30.10	2.FL (Davie), 9	SOP.T.40.101.	FL (Gainesville)),
TOFENPROX		ppm	0.1	PASS	ND	SOP.T.40.102.FL (Davie)						
TOXAZOLE		ppm	0.1	PASS	ND	Analytical Batch : DA070142PES Instrument Used : DA-LCMS-004 (F				n:03/08/24 1 :03/06/24 09:		
ENHEXAMID		ppm	0.1	PASS	ND	Analyzed Date :03/06/24 18:03:50			Batch Date :	03/06/24 09:	10:27	
FENOXYCARB		ppm	0.1	PASS	ND	Dilution : 250						
FENPYROXIMATE		ppm	0.1	PASS	ND	Reagent : 022824.R32; 030624.R0	3: 030324.R03:	022924.R0	4: 021324.R0	5: 030624.R0	1:040423.08	
FIPRONIL		ppm	0.1	PASS	ND	Consumables : 326250IW			,		,	
FLONICAMID		ppm	0.1	PASS	ND	Pipette : DA-093; DA-094; DA-219						
FLUDIOXONIL		ppm	0.1	PASS	ND	Testing for agricultural agents is perf		iquid Chron	natography Trij	ple-Quadrupol	e Mass Spectron	netry in
HEXYTHIAZOX		ppm	0.1	PASS	ND	accordance with F.S. Rule 64ER20-39						
MAZALIL		ppm	0.1	PASS	ND	Analyzed by:	Weight: 0.279q		ion date:		Extracted 3379	l by:
MIDACLOPRID		ppm	0.4	PASS	ND	450, 1665, 1440 Analysis Method : SOP.T.30.151.FL			4 17:40:36	COD T 40 15		
KRESOXIM-METHYL		ppm	0.1	PASS	ND	Analytical Batch : DA070146VOL	(Gamesville), 5		eviewed On :			
MALATHION		ppm	0.2	PASS	ND	Instrument Used : DA-GCMS-010			atch Date : 03			
METALAXYL		ppm	0.1	PASS	ND	Analyzed Date :03/06/24 18:37:57						
METHIOCARB		ppm	0.1	PASS	ND	Dilution: 250						
METHOMYL		ppm	0.1	PASS	ND	Reagent: 030324.R03; 040423.08		21424.R19				
MEVINPHOS		ppm	0.1	PASS	ND	Consumables : 326250IW; 147254	01					
MYCLOBUTANIL		ppm	0.1	PASS	ND	Pipette : DA-080; DA-146; DA-218		Chara	ha anna dhu T. 1-1	. O	Anna Caraba	han i fan
NALED	0.010	ppm	0.25	PASS	ND	Testing for agricultural agents is perf accordance with F.S. Rule 64ER20-39	ormed utilizing G).	ias chroma	lography Triple	2-Quadrupole I	vass spectrome	ury iñ

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/08/24

PASSED

PASSED

Type: Distillate

Everglade Haze Cartridge Concentrate 1g (90%) Everglade Haze Matrix : Derivative

PASSED

PASSED

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

FLUENT

5540 W. Executive Drive Tampa, FL, 33609, US Telephone: (305) 900-6266 Email: Taylor.Jones@getfluent.com
 Sample : DA40306002-003

 Harvest/Lot ID: 6455 9783 3491 9345

 Batch# : 6455 9783 3491

 9345

 Total Ar

 Sampled : 03/06/24

Ordered : 03/06/24

3 3491 9345 Sample Size Received : 16 gram Total Amount : 1942 units Completed : 03/08/24 Expires: 03/08/25 Sample Method : SOP.T.20.010

Page 4 of 6

Residual Solvents

Solvents	LOD	Units	Action Level	Pass/Fail	Result
L,1-DICHLOROETHENE	0.800	ppm	8	PASS	ND
1,2-DICHLOROETHANE	0.200	ppm	2	PASS	ND
ACETONE	75.000	ppm	750	PASS	ND
DICHLOROMETHANE	12.500	ppm	125	PASS	ND
BENZENE	0.100	ppm	1	PASS	ND
-PROPANOL	50.000	ppm	500	PASS	ND
HLOROFORM	0.200	ppm	2	PASS	ND
THANOL	500.000	ppm	5000	PASS	ND
THYL ACETATE	40.000	ppm	400	PASS	ND
BUTANES (N-BUTANE)	500.000	ppm	5000	PASS	ND
CETONITRILE	6.000	ppm	60	PASS	ND
THYL ETHER	50.000	ppm	500	PASS	ND
THYLENE OXIDE	0.500	ppm	5	PASS	ND
IEPTANE	500.000	ppm	5000	PASS	ND
IETHANOL	25.000	ppm	250	PASS	ND
-HEXANE	25.000	ppm	250	PASS	ND
ENTANES (N-PENTANE)	75.000	ppm	750	PASS	ND
OLUENE	15.000	ppm	150	PASS	ND
OTAL XYLENES	15.000	ppm	150	PASS	ND
PROPANE	500.000	ppm	5000	PASS	ND
RICHLOROETHYLENE	2.500	ppm	25	PASS	ND
nalyzed by: 50, 1665, 1440	Weight: 0.0241g	Extraction date: 03/08/24 16:43:2	0		xtracted by: 50
Analysis Method : SOP.T.40.041.FL Analytical Batch : DA070222SOL nstrument Used : DA-GCMS-002 Analyzed Date : 03/08/24 19:41:47			On : 03/08/24 20:23:28 e : 03/07/24 15:27:55		

Dilution : 1 Reagent : N/A

Consumables : G201.062; G201.062 Pipette : DA-309 25 uL Syringe 35028

Residual solvents analysis is performed utilizing Gas Chromatography Mass Spectrometry in accordance with with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/08/24

Type: Distillate

Everglade Haze Cartridge Concentrate 1g (90%) Everglade Haze Matrix : Derivative

PASSED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

FLUENT

5540 W. Executive Drive Tampa, FL, 33609, US Telephone: (305) 900-6266 Email: Taylor.Jones@getfluent.com Sample : DA40306002-003 Harvest/Lot ID: 6455 9783 3491 9345 Batch#: 6455 9783 3491

9345 Sampled : 03/06/24 Ordered : 03/06/24 Sample Size Received : 16 gram Total Amount : 1942 units Completed : 03/08/24 Expires: 03/08/25 Sample Method : SOP.T.20.010

Page 5 of 6

Ę	Microbia	I			PAS	SED	స్తో	Му	cotoxi	ns			PAS	SED
Analyte		LOD	Units	Result	Pass / Fail	Action Level	Analyte			LOD	Units	Result	Pass / Fail	Action Level
ASPERGILLU	S TERREUS			Not Present	PASS	Level	AFLATOXIN	B2		0.002	ppm	ND	PASS	0.02
ASPERGILLU				Not Present	PASS		AFLATOXIN			0.002	ppm	ND	PASS	0.02
ASPERGILLU	S FUMIGATUS			Not Present	PASS		OCHRATOXI	NA		0.002	ppm	ND	PASS	0.02
ASPERGILLU	S FLAVUS			Not Present	PASS		AFLATOXIN	G1		0.002	ppm	ND	PASS	0.02
SALMONELL	A SPECIFIC GENE			Not Present	PASS		AFLATOXIN	G2		0.002	ppm	ND	PASS	0.02
ECOLI SHIGE	LLA			Not Present	PASS		Analyzed by:		Weight:	Extraction d	ate:		Extracted	1 by:
TOTAL YEAS	T AND MOLD	10	CFU/g	<10	PASS	100000	3379, 1665, 1	140	0.279g	03/06/24 17			3379	
Analyzed by: 3390, 1665, 14	Weight: 40 0.8g		action date: 6/24 12:47:		Extracted 3390	by:	SOP.T.30.102	FL (Davie), S).101.FL (Gain 60P.T.40.102.F	L (Davie)				
	d : SOP.T.40.056C, SOP h : DA070126MIC	.T.40.058	3.FL, SOP.T.4		wed On : 03	3/08/24	Analytical Bat Instrument Us Analyzed Date	ed:N/A			wed On : 0 Date : 03/			
sotemp Heat Analyzed Date	: 03/06/24 18:39:44 424.42; 012424.47; 022						040423.08 Consumables Pipette : DA-0	: 326250IW 93; DA-094; ting utilizing L	iquid Chromatog					
Analyzed by: 3390, 1665, 14	40 Weight:		action date: 6/24 12:47:		Extracted 3390	by:	Hg	Неа	vy Me	tals			PAS	SED
Analytical Batc	d: SOP.T.40.208 (Gaine h: DA070170TYM		Revi	iewed On : 03/0			Metal			LOD	Units	Result	Pass / Fail	Action Level
	ed : Incubator (25-27*C) : 03/06/24 18:34:28	DA-097	Bato	ch Date : 03/06/	24 15:27:1	.4	TOTAL CON		LOAD METALS	0.080	ppm	ND	PASS	1.1
Dilution : N/A							ARSENIC			0.020	ppm	ND	PASS	0.2
	124.42; 012424.47; 012	524.R09					CADMIUM			0.020	ppm	ND	PASS	0.2
Consumables :							MERCURY			0.020	ppm	ND	PASS	0.2
Pipette : N/A							LEAD			0.020	ppm	ND	PASS	0.5
	mold testing is performed u F.S. Rule 64ER20-39.	itilizing MF	PN and tradition	onal culture base	d techniques	s in	Analyzed by: 1022, 53, 166	5, 1440	Weight: 0.293g	Extraction 03/07/24			Extracted 1022,430	
							Analysis Meth Analytical Bat Instrument Us Analyzed Date	ch:DA0701	IS-004	Review	ed On : 03, ate : 03/0			
							Dilution : 50		0424.R04; 030	424.R01; 0304	424.R02; 0	30424.R0	3; 03042	4.01;

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

Consumables : 179436; 34623011; 210508058 Pipette : DA-061; DA-191; DA-216

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

03/08/24

Type: Distillate

..... Everglade Haze Cartridge Concentrate 1g (90%) Everglade Haze Matrix : Derivative

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

PASSED

FLUENT

5540 W. Executive Drive Tampa, FL, 33609, US **Telephone:** (305) 900-6266 Email: Taylor.lones@getfluent.com Sample : DA40306002-003 Harvest/Lot ID: 6455 9783 3491 9345 Batch# : 6455 9783 3491 9345 Sampled : 03/06/24 Ordered : 03/06/24

Sample Size Received : 16 gram Total Amount : 1942 units Completed : 03/08/24 Expires: 03/08/25 Sample Method : SOP.T.20.010

erial				SSED			
LOD al 0.100	Units) %	Result ND	P/F PASS	Action Level			
Weight: NA	Extracti N/A	on date:	Extracted by: N/A				
5FIL ign Material Micr	oscope						
		spection utilizi	ng naked ey	e and microscope			
er Activ	vity		ΡΑ	SSED			
LOD	Units	Result	P/F	Action Level			
0.010	aw	0.470	PASS	0.85			
	ial 0.100 Weight: NA .090 5FIL eign Material Micr 3:37:31 ection is performed h F.S. Rule 64ER20 Cer Activ	al 0.100 % Weight: Extracti NA N/A 0.090 SFIL ign Material Microscope 3:37:31 ection is performed by visual in: h F.S. Rule 64ER20-39. Ser Activity	ial 0.100 % ND Weight: Extraction date: NA N/A .090 Reviewed 5FIL Reviewed ign Material Microscope Batch Dat 3:37:31 Section is performed by visual inspection utilizing ection is performed by visual inspection utilizing Section utilizing Section is performed by visual inspection utilizing Section utilizing Section is performed by visual inspection utilizing Section utilizing Section is performed by visual inspection utilizing Section utilizing Section is performed by visual inspection utilizing Section utilizing Section is performed by visual inspection utilizing Section utilizing Section is performed by visual inspection utilizing Section utilizing Section is performed by visual inspection utilizing Section utilizing Section is performed by visual inspection utilizing Section utilizing Section is performed by visual inspection utilizing Section utilizing Section is performed by visual utilizing Section utilizing Section is performed by visual utilizing Section utilizing Section is performed by visual utilizing Section utilizing	Ial 0.100 % ND PASS Weight: Extraction date: Extr NA N/A N/A 0.90 Reviewed On : 03/07 5FIL Reviewed On : 03/07 1gn Material Microscope Batch Date : 03/06/2 3:37:31 State of the second of the s			

Analytical Batch : DA070164WAT Reviewed On: 03/07/24 15:10:31 Instrument Used : DA256 Rotronic HygroPalm Batch Date : 03/06/24 11:17:20 Analyzed Date : 03/06/24 13:40:24 Dilution : N/A Reagent : 022024.28 Consumables : PS-14 Pipette : N/A

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 03/08/24

Page 6 of 6