

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Kaycha Labs

FTH-Mac 1 Full Flower 1g Pre-roll(s) (.035oz) 1 unit FTH-Mac 1 Full Flower Matrix: Flower Type: Flower-Cured

Certificate of Analysis COMPLIANCE FOR RETAIL

Sample:DA40117004-009 Harvest/Lot ID: HYB-SC-122223-C0122 Batch#: 8592 4296 6433 5198 **Cultivation Facility: Tampa Cultivation Processing Facility : Tampa Processing Source Facility : Tampa Cultivation** Seed to Sale# 9626 3205 7976 0790 Batch Date: 10/31/23 Sample Size Received: 26 gram Total Amount: 909 units Retail Product Size: 1 gram Ordered: 01/16/24 Sampled: 01/17/24 Completed: 01/19/24 Sampling Method: SOP.T.20.010

PASSED

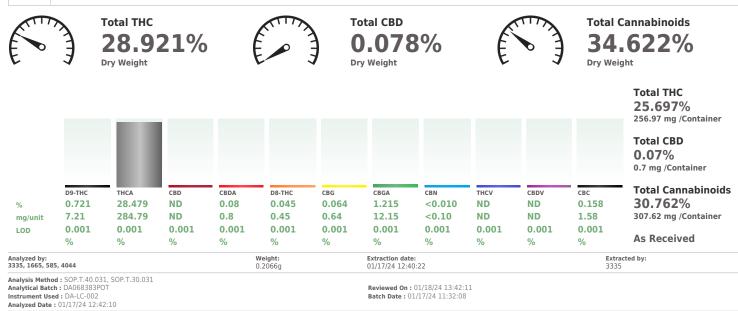
Jan 19, 2024 | FLUENT 82 NE 26th street Miami, FL, 33137, US

PRODUCT IMAGE SAFETY RESULTS

Cannabinoid

Pesticides

PASSED



TESTED

MISC.

PASSED

Dilution : 400

Reagent : 010224.R05; 060723.24; 010224.R03 Consumables : 947.109; CE0123; 12594-247CD-247C; R1KB14270

Pipette : DA-079; DA-108; DA-078

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA Testing 97164

Signature 01/19/24

. FTH-Mac 1 Full Flower 1g Pre-roll(s) (.035oz) 1 unit FTH-Mac 1 Full Flower Matrix : Flower Type: Flower-Cured

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

FLUENT

82 NE 26th street Miami, FL, 33137, US Telephone: (305) 900-6266 Email: Taylor.Jones@getfluent.com Sample : DA40117004-009 Harvest/Lot ID: HYB-SC-122223-C0122 Batch#: 8592 4296 6433 5198 Sampled : 01/17/24

Ordered : 01/17/24

Sample Size Received : 26 gram Total Amount : 909 units Completed : 01/19/24 Expires: 01/19/25 Sample Method : SOP.T.20.010

Page 2 of 5

TESTED

PASSED

Terpenes

[%)).007			Result (%)	Terpenes		(%)		%	Result (%)	
	14.85	1.485		VALENCENE		0.007	ND	ND		
0.007	2.53	0.253		ALPHA-CEDRENE		0.007	ND	ND		
0.007	2.12	0.212		ALPHA-PHELLANDRENE		0.007	ND	ND		
0.007	1.84	0.184		ALPHA-TERPINENE		0.007	ND	ND		
0.007	1.69	0.169		ALPHA-TERPINOLENE		0.007	ND	ND		
0.007	1.17	0.117		CIS-NEROLIDOL		0.007	ND	ND		
0.007	1.12	0.112		GAMMA-TERPINENE		0.007	ND	ND		
0.007	0.78	0.078		TRANS-NEROLIDOL		0.007	ND	ND		
0.007	0.73	0.073		Analyzed by:	Weight:		Extraction da	ate:	E	xtracted by:
0.007	0.57	0.057		2076, 585, 4044	0.8848g					076
0.007	0.33	0.033			SOP.T.40.061A.FL					
0.007	0.32	0.032		Analytical Batch : DA068394TER						
0.013	< 0.40	< 0.040					Batch	pate:01	1/1//24 12:00:40	
0.007	<0.20	< 0.020								
0.001	< 0.09	< 0.009		Reagent : 110123.08						
0.007	<0.20	< 0.020			95; CE123; R1KB452	77				
0.007	ND	ND								
0.007	ND	ND		Terpenoid testing is performed utilizing Ga	as Chromatography Ma	ss Spectr	ometry. For all F	Flower sam	ples, the Total Terpenes % is dry-w	veight corrected.
0.007	ND	ND								
0.007	ND	ND								
0.007	ND	ND								
0.007	ND	ND								
0.007	ND	ND								
0.007	ND	ND								
0.007	ND	ND								
0.007	ND	ND								
0.007	ND	ND								
0.007	ND	ND								
0.007	ND	ND								
0.007	ND	ND								
0.007	ND	ND								
	1	1.485								
	0007 0007 0007 0007 0007 0007 0007 000	1.69 1.69 1.007 1.12 0.007 1.12 0.007 0.12 0.007 0.78 0.007 0.73 0.007 0.33 0.007 0.32 0.01 <0.40	1.69 1.69 0.169 0.007 1.12 0.112 0.007 1.12 0.112 0.007 1.12 0.112 0.007 0.12 0.12 0.007 0.78 0.078 0.007 0.33 0.033 0.007 0.32 0.32 0.017 0.20 -0.020 0.017 -0.20 -0.020 0.007 ND ND 0.07	0.007 1.69 0.169 0.007 1.17 0.117 0.007 1.12 0.12 0.007 0.13 0.13 0.007 0.78 0.078 0.007 0.73 0.033 0.007 0.32 0.032 0.01 -0.0040 -0.001 0.07 0.32 -0.020 0.01 -0.09 -0.009 0.01 -0.09 -0.020 0.07 ND ND 0.07	0.007 1.69 0.169 ALPHA-TERPINOLENE 0.007 1.17 0.117 CIS-NEROLIDOL 0.007 1.12 CIS-NEROLIDOL CIS-NEROLIDOL 0.007 0.78 0.078 TRANS-NEROLIDOL 0.007 0.73 0.073 0.073 0.007 0.73 0.033 Analyzed by: 0.007 0.33 0.033 Analyzed by: 0.007 0.32 0.032 Analyzed by: 0.013 -0.032 0.032 Analyzed by: 0.014 -0.040 Analyzed by: Analyzed by: 0.015 -0.020 Misci Daketti, DakeB394TER Nalyzed by: 0.01 -0.09 -0.000 Pate: NA. Nalyzed by: 0.01 -0.09 -0.020 Pate: NA. Nalyzed by: 0.007 ND ND Pate: NA. NAlpzed by: 0.007 ND ND Pate: NA. NAlpzed by: 0.007 ND ND Pate: NA. NAlpzed by:	ADD7 1.69 0.169 ALPHA-TERPINOLENE 0.007 1.17 0.117 CIS-HEROLIDOL CIS-HEROLIDOL 0.007 1.12 CIS-HEROLIDOL CIS-HEROLIDOL Analysed by: 0.007 0.78 0.078 TRANS-HEROLIDOL Analysed by: Weight: 0.007 0.73 0.037 0.037 O.057 Weight: 0.046 0.007 0.33 0.033 Analysed by: D.0658 Meight: 0.007 0.32 0.032 Analysed by: D.068394TER Meight: 0.007 0.33 0.033 Analysed by: D.0168494 SOP.T.40.061A,FL 0.007 0.20 <0.020	0.007 1.69 0.169 0.169 0.007 0.007 1.17 0.117 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.003 0.007 0.007 0.003 0.003 0.007 0.007 0.020 0.007 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.040 Analyzed by: Weight: 0.0061A,FL, SOP,T,40,061A,FL, SOP,T,40,061A,	0.007 1.69 0.169 0.169 0.007 ND 0.007 1.17 0.117 0.007 ND 0.007 ND 0.007 1.12 0.117 0.017 ND 0.007 ND 0.007 0.78 0.078 0.071 ND 0.007 ND 0.007 0.73 0.073 0.037 0.08409 0.128/24 11 0.08409 0.128/24 11 0.007 0.33 0.033 0.033 0.033 0.033 0.034 Analysical Batch is DAG63394TER Analysical Batch is DAG6394TER Review Review Batch analysical Batch is DAG63394TER Review Batch analysical Batch is DAG63394TER ND	0.007 1.69 0.169 0.169 0.007 ND ND 0.007 1.12 0.117 0.117 0.007 ND ND ND 0.007 1.12 0.117 0.007 ND ND ND 0.007 0.78 0.078 0.078 0.07 ND ND ND 0.007 0.73 0.037 0.037 0.037 ND ND ND 0.007 0.33 0.033 0.033 Analyzed by: Weight: 0.2849(9) 0.2849(2) 0.2824(2) 0.12(2/4) 1140:27 0.007 0.33 0.33 0.33 0.33 ND	0.007 1.69 0.169 0.007 1.17 0.117 0.117 0.007 ND ND ND 0.007 1.12 0.112 0.007 ND ND ND 0.007 0.78 0.078 0.078 0.078 0.077 ND ND ND 0.007 0.78 0.073 0.037 ND ND ND ND 0.007 0.73 0.073 0.033 0.33 0.33 0.33 0.644 0.6949 Extraction date: 2 0.007 0.32 0.32 0.33 0.33 0.614 1.40-27 2 2 0.007 0.32 0.32 0.33 0.33 0.614 1.406334711 0.617.90.061.4.FL Analysia Match of 1.00.2.7. 2 2 0.007 0.20 0.020 0.020 0.020 0.020 1.1162.2.08 Reviewed 0n: 0.11/3/24 12.50.11 Batch Date: 10.17/24 12.50.46 0.007 ND ND ND ND

Total (%)

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 01/19/24

FTH-Mac 1 Full Flower 1g Pre-roll(s) (.035oz) 1 unit FTH-Mac 1 Full Flower Matrix : Flower Type: Flower-Cured

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

FLUENT

82 NE 26th street Miami, FL, 33137, US Telephone: (305) 900-6266 Email: Taylor.Jones@getfluent.com Sample : DA40117004-009 Harvest/Lot ID: HYB-SC-12223-C0122 Batch# : 8592 4296 6433 Sample S

5198 Sampled : 01/17/24 Ordered : 01/17/24 Sample Size Received : 26 gram Total Amount : 909 units Completed : 01/19/24 Expires: 01/19/25 Sample Method : SOP.T.20.010

Page 3 of 5

Ъ
6

Pesticides

Pesticide	LOD	Units	Action Level	Pass/Fail	Result	Pesticide	LOD	Units	Action Level	Pass/Fail	Result
TOTAL CONTAMINANT LOAD (PESTICIDES)	0.010	ppm	5	PASS	ND	OXAMYL	0.010	ppm	0.5	PASS	ND
TOTAL DIMETHOMORPH	0.010	ppm	0.2	PASS	ND	PACLOBUTRAZOL	0.010	maa	0.1	PASS	ND
TOTAL PERMETHRIN	0.010	ppm	0.1	PASS	ND	PHOSMET	0.010		0.1	PASS	ND
TOTAL PYRETHRINS	0.010	ppm	0.5	PASS	ND	PIPERONYL BUTOXIDE	0.010		3	PASS	ND
TOTAL SPINETORAM	0.010	ppm	0.2	PASS	ND						ND
TOTAL SPINOSAD	0.010	ppm	0.1	PASS	ND	PRALLETHRIN	0.010		0.1	PASS	
ABAMECTIN B1A	0.010	ppm	0.1	PASS	ND	PROPICONAZOLE	0.010	1.1.	0.1	PASS	ND
ACEPHATE	0.010	ppm	0.1	PASS	ND	PROPOXUR	0.010	ppm	0.1	PASS	ND
ACEQUINOCYL	0.010	ppm	0.1	PASS	ND	PYRIDABEN	0.010	ppm	0.2	PASS	ND
ACETAMIPRID	0.010	ppm	0.1	PASS	ND	SPIROMESIFEN	0.010	ppm	0.1	PASS	ND
ALDICARB	0.010	ppm	0.1	PASS	ND	SPIROTETRAMAT	0.010	ppm	0.1	PASS	ND
AZOXYSTROBIN	0.010	ppm	0.1	PASS	ND	SPIROXAMINE	0.010	maa	0.1	PASS	ND
BIFENAZATE	0.010	ppm	0.1	PASS	ND	TEBUCONAZOLE	0.010		0.1	PASS	ND
BIFENTHRIN	0.010	ppm	0.1	PASS	ND	THIACLOPRID	0.010		0.1	PASS	ND
BOSCALID	0.010	ppm	0.1	PASS	ND		0.010		0.5	PASS	ND
CARBARYL	0.010	ppm	0.5	PASS	ND	THIAMETHOXAM				PASS	
CARBOFURAN	0.010	ppm	0.1	PASS	ND	TRIFLOXYSTROBIN	0.010		0.1		ND
CHLORANTRANILIPROLE	0.010	ppm	1	PASS	ND	PENTACHLORONITROBENZENE (PCNB) *	0.010		0.15	PASS	ND
CHLORMEQUAT CHLORIDE	0.010	ppm	1	PASS	ND	PARATHION-METHYL *	0.010		0.1	PASS	ND
CHLORPYRIFOS	0.010	ppm	0.1	PASS	ND	CAPTAN *	0.070	PPM	0.7	PASS	ND
CLOFENTEZINE	0.010	ppm	0.2	PASS	ND	CHLORDANE *	0.010	PPM	0.1	PASS	ND
COUMAPHOS	0.010	ppm	0.1	PASS	ND	CHLORFENAPYR *	0.010	PPM	0.1	PASS	ND
DAMINOZIDE	0.010	ppm	0.1	PASS	ND	CYFLUTHRIN *	0.050	PPM	0.5	PASS	ND
DIAZINON	0.010	ppm	0.1	PASS	ND	CYPERMETHRIN *	0.050	PPM	0.5	PASS	ND
DICHLORVOS	0.010	ppm	0.1	PASS	ND	Analyzed by: Weight:		on date:		Extracted b	
DIMETHOATE	0.010	ppm	0.1	PASS	ND	3379, 585, 4044 1.103q		19:10:50		795,3379	y:
ETHOPROPHOS	0.010	ppm	0.1	PASS	ND	Analysis Method : SOP.T.30.101.FL (Gainesville),			SOP T 40 101)
ETOFENPROX	0.010	ppm	0.1	PASS	ND	SOP.T.40.102.FL (Davie)					,
ETOXAZOLE	0.010	ppm	0.1	PASS	ND	Analytical Batch : DA068377PES			n:01/19/24 1		
FENHEXAMID	0.010	ppm	0.1	PASS	ND	Instrument Used : DA-LCMS-003 (PES)		Batch Date	:01/17/24 11:	18:14	
FENOXYCARB	0.010	ppm	0.1	PASS	ND	Analyzed Date :01/18/24 15:19:51					
FENPYROXIMATE	0.010	ppm	0.1	PASS	ND	Dilution : 250 Reagent : 011724.R04; 040423.08; 011624.R05;	011724 020	011624 004	011024 001.	011724 005	
FIPRONIL	0.010	ppm	0.1	PASS	ND	Consumables : 326250IW	011/24.1125	, 011024.1104	, 011024.1101,	011724.1105	
FLONICAMID	0.010	ppm	0.1	PASS	ND	Pipette : DA-093; DA-094; DA-219					
FLUDIOXONIL	0.010	ppm	0.1	PASS	ND	Testing for agricultural agents is performed utilizing	Liquid Chron	natography Tri	ple-Quadrupole	Mass Spectron	netry in
HEXYTHIAZOX	0.010		0.1	PASS	ND	accordance with F.S. Rule 64ER20-39.					
IMAZALIL	0.010		0.1	PASS	ND	Analyzed by: Weight:		action date:		Extracted	by:
IMIDACLOPRID	0.010		0.4	PASS	ND	450, 1665, 585, 4044 1.103g		7/24 19:10:50		795,3379	
KRESOXIM-METHYL	0.010	ppm	0.1	PASS	ND	Analysis Method :SOP.T.30.151.FL (Gainesville),					
MALATHION	0.010		0.2	PASS	ND	Analytical Batch : DA068379VOL Instrument Used : DA-GCMS-010			01/18/24 12:4 /17/24 11:19:		
METALAXYL	0.010		0.1	PASS	ND	Analyzed Date :01/17/24 20:23:54	De	accel pare 101	., . , /	~ ~	
METHIOCARB	0.010		0.1	PASS	ND	Dilution : 250					
METHOMYL	0.010		0.1	PASS	ND	Reagent : 011724.R04; 040423.08; 121423.R01;	010524.R01				
MEVINPHOS	0.010		0.1	PASS	ND	Consumables : 326250IW; 14725401					
MYCLOBUTANIL	0.010		0.1	PASS	ND	Pipette : DA-080; DA-146; DA-218					
NALED	0.010	ppm	0.25	PASS	ND	Testing for agricultural agents is performed utilizing accordance with F.S. Rule 64ER20-39.	Gas Chroma	tography Triple	e-Quadrupole N	lass Spectrome	try in

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Sen Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 01/19/24

PASSED

PASSED

FTH-Mac 1 Full Flower 1g Pre-roll(s) (.035oz) 1 unit FTH-Mac 1 Full Flower Matrix : Flower Type: Flower-Cured

PASSED

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

FLUENT

82 NE 26th street Miami, FL, 33137, US Telephone: (305) 900-6266 Email: Taylor.Jones@getfluent.com Sample : DA40117004-009 Harvest/Lot ID: HYB-SC-12223-C0122 Batch# : 8592 4296 6433 5198 Total Am

Sampled : 01/17/24 Ordered : 01/17/24 Sample Size Received : 26 gram Total Amount : 909 units Completed : 01/19/24 Expires: 01/19/25 Sample Method : SOP.T.20.010

Page 4 of 5

E.	Microb	oial			PAS	SED	သို့	Mycot	oxin	S			PAS	SED	
Analyte		LOD	Units	Result	Pass / Fail	Action Level	Analyte			LOD	Units	Result	Pass / Fail	Action Level	
SALMONELL	A SPECIFIC GENE			Not Present	PASS	Level	AFLATOXIN B2			0.002	ppm	ND	PASS	0.02	
ECOLI SHIGE	LLA			Not Present	PASS		AFLATOXIN B1			0.002	ppm	ND	PASS	0.02	
ASPERGILLU	S FLAVUS			Not Present	PASS		OCHRATOXIN A	A		0.002	ppm	ND	PASS	0.02	
ASPERGILLU	S FUMIGATUS			Not Present	PASS		AFLATOXIN G1			0.002	ppm	ND	PASS	0.02	
ASPERGILLU	S TERREUS			Not Present	PASS		AFLATOXIN G2			0.002	ppm	ND	PASS	0.02	
ASPERGILLU	S NIGER			Not Present	PASS		Analyzed by:	Weig	ht: E	traction da	te:	F	xtracted I		
TOTAL YEAS	T AND MOLD	10	CFU/g	<10	PASS	100000	3379, 585, 4044	1.103		L/17/24 19:1			95,3379	<i>.</i> ,,,	
Analytical Bate	665, 585, 4044 od : SOP.T.40.056C :h : DA068386MIC ed : Incubator (37*0		8.FL, SOP.T.	Reviewed O		4 14:27:02	Analysis Method SOP.T.30.102.FL Analytical Batch Instrument Used Analyzed Date : 0	(Davie), SOP.T.4 DA068424MYC N/A	40.102.FL (Davie) Revie	wed On : 0 Date : 01/	1/19/24 1	4:12:55		
	GENE-UP RTPCR, Ir : 01/17/24 15:33:4		C) DA- 328				Dilution : 250 Reagent : 011724	4.R04; 040423.0	08; 011624	.R05; 01172	24.R29; 01	1624.R04	; 011024.	R01;	
Dilution : N/A Reagent : 0116 Consumables :	624.R29; 011624.R 2256280	22					011724.R05 Consumables : 32 Pipette : DA-093;		.9						
Pipette : N/A							Mycotoxins testing accordance with F			hy with Tripl	e-Quadrupo	le Mass Spe	ctrometry	in	
Analyzed by: 3336, 3390, 58			Extraction c 01/17/24 12		Extracte 3336	d by:									
Analytical Bato Instrument Use	od : SOP.T.40.208 (h : DA068397TYM ed : Incubator (25-2	27*C) DA-096	Rev	9.FL iewed On : 01/1 ch Date : 01/17/2			Hg	Heavy	Met	als			PAS	SED	
Analyzed Date	: 01/17/24 15:35:5	1					Metal			LOD	Units	Result	Pass / Fail	Action Level	
	623.27; 111623.29;	;010524.R10					TOTAL CONTAI	MINANT LOAD	METALS	0.080	ppm	ND	PASS	1.1	
Consumables :	N/A						ARSENIC			0.020	ppm	ND	PASS	0.2	
Pipette : N/A							CADMIUM			0.020	ppm	ND	PASS	0.2	
	mold testing is perfor		PN and traditi	onal culture based	d techniques	in	MERCURY			0.020	ppm	ND	PASS	0.2	
accordance with	I F.S. Rule 64ER20-39.						LEAD			0.020	ppm	ND	PASS	0.5	
							Analyzed by: 1022, 1665, 585,	4044	Weight: 0.2642g		on date: 4 13:56:56	5	Extracter 1022	ed by:	
							Analysis Method : SOP.T.30.082.FL, SOP.T.40.082.FL Analytical Batch : DA068378HEA Reviewed On : 01/18/2 Instrument Used : DA-ICPMS-004 Batch Date : 01/17/24 Analyzed Date : 01/18/24 10:24:25 Date : 01/17/24					- 1			
							Dilution : 50 Reagent : 010824 120623.R45	4.R08; 011624.F	R12; 01162	4.R28; 011	624.R10; 0	11624.R1	1; 01122	4.R12;	

Consumables : 179436; 12532-225CD-225C; 210508058

Pipette : DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 01/19/24

. FTH-Mac 1 Full Flower 1g Pre-roll(s) (.035oz) 1 unit FTH-Mac 1 Full Flower Matrix : Flower Type: Flower-Cured

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

FLUENT

82 NE 26th street Miami, FL, 33137, US Telephone: (305) 900-6266 Email: Taylor.lones@getfluent.com Sample : DA40117004-009 Harvest/Lot ID: HYB-SC-122223-C0122 Batch#: 8592 4296 6433 5198

Sampled : 01/17/24 Ordered : 01/17/24

Sample Size Received : 26 gram Total Amount : 909 units Completed : 01/19/24 Expires: 01/19/25 Sample Method : SOP.T.20.010

Filth/Foreign Material

PASSED

Action Level

PASSED

Page 5 of 5

Analyte Filth and Foreign Material	LOD 0.100	Units %	Result ND	P/F PASS	Action Level	Analyte Moisture Content		LOD 1.00	Units %	Result 11.15	P/F PASS	Action Le
Analyzed by: 1879, 585, 4044	Weight: NA	Extraction N/A	on date:	Extra N/A	cted by:		Weight: 0.519g		traction d 1/17/24 11		Ext 43	tracted by: 71
Analysis Method : SOP.T.40.09 Analytical Batch : DA068404FII Instrument Used : Filth/Foreign Analyzed Date : 01/17/24 19:58	L Material Micro	oscope		On : 01/17/ :e : 01/17/24	/24 20:40:30 4 19:56:43	Analysis Method : SOP.T.40.0 Analytical Batch : DA0683901 Instrument Used : DA-003 Mo Analyzed Date : N/A	MOI	nalyzer		Reviewed On Batch Date : (
Dilution : N/A Reagent : N/A Consumables : N/A Pipette : N/A						Dilution : N/A Reagent : 120623.R45; 0315 Consumables : N/A Pipette : DA-066	523.19					
Filth and foreign material inspection technologies in accordance with F.			spection utilizi	ng naked eye	and microscope	Moisture Content analysis utilizir	ng loss-on	-drying	technology	in accordance	with F.S. Rul	e 64ER20-39.
() Wate	r Activ	vity		PAS	SSED							

Analyte Water Activity	-	LOD Units 0.010 aw		Result 0.45		Action 5 0.65	Level	
Analyzed by: 4371, 585, 4044						Extracted by: 4371		
Analysis Method : SOP Analytical Batch : DAO Instrument Used : DA- Analyzed Date : N/A	68391WAT	gropal	m		,	17/24 22:48:04 7/24 12:41:16	4	
Dilution : N/A Reagent : 113021.09 Consumables : PS-14 Pipette : N/A								

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 01/19/24