

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis COMPLIANCE FOR RETAIL

FTH - Z - Face #92 WF 3.5g(1/8oz) FTH-7-Face #92

Kaycha Labs

Matrix: Flower Type: Flower-Cured Sample:DA31230006-005 Harvest/Lot ID: HBY-ZF#92-122823-C0123 Batch#: 2586 9380 6855 6700 **Cultivation Facility: Zolfo Springs Cultivation Processing Facility : Zolfo Springs** Processing Source Facility : Zolfo Springs Cultivation Seed to Sale# 7448 2306 4049 7781 Batch Date: 11/25/23 Sample Size Received: 31.5 gram

> Total Amount: 413 units Retail Product Size: 3.5 gram Ordered: 12/29/23 Sampled: 12/30/23 Completed: 01/03/24 Sampling Method: SOP.T.20.010

> > PASSED

MISC.

Jan 03, 2024 | FLUENT 82 NE 26th street

Miami, FL, 33137, US

Pesticides

Cannabinoid

PASSED

Hg

Microbials PASSED

Residuals Solvents

Filth PASSED

PASSED

Water Activity

Moisture

PASSED

Pages 1 of 5

TESTED

PASSED

Total THC Total CBD **Total Cannabinoids** 0.058% 2.404% 26.197% Dry Weight Dry Weight Dry Weight Total THC

Mycotoxins

PASSED

19.62% 686.7 mg /Container Total CBD 0.051% 1.785 mg /Container **Total Cannabinoids** D9-THC CBD CBDA D8-THC CBG CBGA CBN тнсу CRDV CBC THCA 0.414 21.9 ND 0.059 0.045 0.071 0.416 ND ND ND 0.036 22.941% % 14.49 766.5 ND 2.065 1.575 2.485 14.56 ND ND ND 1.26 802.935 mg /Container ma/unit 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 LOD As Received % % % % % % % % % % % Analyzed by: 1665, 585, 1440 Weight Extraction date: Extracted by: 01/02/24 08:07:56 0.189a 1665 Analysis Method : SOP.T.40.031, SOP.T.30.031 Analytical Batch : DA067891POT Reviewed On : 01/03/24 13:31:19 Instrument Used : DA-LC-002 Batch Date : 12/31/23 07:31:17 Analyzed Date : 01/02/24 08:10:17

Dilution : 400 Reagent : 122223.R01; 032123.11; 121223.R01

Consumables : 947.100; LLS-00-0005; 280670723; R1KB14270 Pipette : DA-079; DA-108; DA-078

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA Testing 97164

Signature 01/03/24

FTH - Z - Face #92 WF 3.5g(1/8oz) FTH-Z-Face #92 Matrix : Flower Type: Flower-Cured

PASSED

TESTED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

FLUENT

82 NE 26th street Miami, FL, 33137, US Telephone: (305) 900-6266 Email: Taylor.Jones@getfluent.com Sample : DA31230006-005 Harvest/Lot ID: HBY-ZF#92-122823-C0123 Batch# : 2586 9380 6855 6700

Sampled : 12/30/23 Ordered : 12/30/23

Sample Size Received : 31.5 gram Total Amount : 413 units Completed : 01/03/24 Expires: 01/03/25 Sample Method : SOP.T.20.010

Page 2 of 5

_			
Ге	rp	en	es

erpenes	LOD (%)	mg/unit	%	Result (%)	Terpenes		.OD %)	mg/unit	%	Result (%)	
OTAL TERPENES	0.007	61.43	1.755		VALENCENE			ND	ND		
IMONENE	0.007	17.54	0.501		ALPHA-CEDRENE	C	.007	ND	ND		
ETA-MYRCENE	0.007	12.39	0.354		ALPHA-PHELLANDRENE	C	.007	ND	ND		
NALOOL	0.007	7.67	0.219		ALPHA-TERPINENE	C	.007	ND	ND		
ETA-PINENE	0.007	3.96	0.113		ALPHA-TERPINOLENE	C	.007	ND	ND		
ENCHYL ALCOHOL	0.007	3.05	0.087		CIS-NEROLIDOL	C	.007	ND	ND		
ETA-CARYOPHYLLENE	0.007	2.87	0.082		GAMMA-TERPINENE	C	.007	ND	ND		
LPHA-PINENE	0.007	2.66	0.076		TRANS-NEROLIDOL	C	.007	ND	ND		
DTAL TERPINEOL	0.007	1.86	0.053		Analyzed by:	Weight:		xtraction da			Extracted by:
LPHA-HUMULENE	0.007	1.12	0.032		2076, 585, 1440	0.9143g	12	2/30/23 14:	19:54		3963
ARNESENE	0.001	0.70	0.020		Analysis Method : SOP.T.30.061A.FL, SO	P.T.40.061A.FL					
AMPHENE	0.007	<0.70	<0.020		Analytical Batch : DA067884TER Instrument Used : DA-GCMS-009)1/02/24 10:30:11 /30/23 11:48:00	
ERANIOL	0.007	<0.70	<0.020		Analyzed Date : 12/30/23 16:52:10			Batch	Date : 12	100/20 11.46:00	
PHA-BISABOLOL	0.007	<0.70	<0.020		Dilution : 100						
CARENE	0.007	ND	ND		Reagent : 121622.26						
DRNEOL	0.013	ND	ND		Consumables : 210414634; MKCN9995;	CE0123; R1KB142	270				
MPHOR	0.007	ND	ND		Pipette : N/A		6				
RYOPHYLLENE OXIDE	0.007	ND	ND		Terpenoid testing is performed utilizing Gas C	nromatography Mas.	s Spectrome	etry. For all F	lower sam	pies, the Total Terpenes %	is ary-weight corrected
DROL	0.007	ND	ND								
CALYPTOL	0.007	ND	ND								
INCHONE	0.007	ND	ND								
ERANYL ACETATE	0.007	ND	ND								
UAIOL	0.007	ND	ND								
EXAHYDROTHYMOL	0.007	ND	ND								
OBORNEOL	0.007	ND	ND								
OPULEGOL	0.007	ND	ND								
EROL	0.007	ND	ND								
CIMENE	0.007	ND	ND								
ULEGONE	0.007	ND	ND								
	0.007	ND	ND								
ABINENE	0.007										
ABINENE ABINENE HYDRATE	0.007		ND								

Total (%)

1.755

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 01/03/24

FTH - Z - Face #92 WF 3.5g(1/8oz) FTH-Z-Face #92 Matrix : Flower Type: Flower-Cured

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

FLUENT

82 NE 26th street Miami, FL, 33137, US Telephone: (305) 900-6266 Email: Taylor.Jones@getfluent.com Sample : DA31230006-005 Harvest/Lot ID: HBY-ZF#92-122823-C0123 Batch# : 2586 9380 6855 Sample Size

6700 Sampled : 12/30/23 Ordered : 12/30/23 Sample Size Received : 31.5 gram Total Amount : 413 units Completed : 01/03/24 Expires: 01/03/25 Sample Method : SOP.T.20.010

Page 3 of 5

R 0

Pesticides

Pesticide	LOD	Units	Action Level	Pass/Fail	Result	Pesticide	L	.OD	Units	Action Level	Pass/Fail	Result
TOTAL CONTAMINANT LOAD (PESTICIDES)	0.010	ppm	5	PASS	ND	OXAMYL	0	0.010	ppm	0.5	PASS	ND
TOTAL DIMETHOMORPH	0.010	ppm	0.2	PASS	ND	PACLOBUTRAZOL	0	0.010	nnm	0.1	PASS	ND
TOTAL PERMETHRIN	0.010	ppm	0.1	PASS	ND	PHOSMET		0.010		0.1	PASS	ND
TOTAL PYRETHRINS	0.010	ppm	0.5	PASS	ND					3	PASS	ND
TOTAL SPINETORAM	0.010	ppm	0.2	PASS	ND	PIPERONYL BUTOXIDE			ppm			
TOTAL SPINOSAD	0.010	ppm	0.1	PASS	ND	PRALLETHRIN		0.010		0.1	PASS	ND
ABAMECTIN B1A	0.010	ppm	0.1	PASS	ND	PROPICONAZOLE	0	0.010	ppm	0.1	PASS	ND
ACEPHATE	0.010	ppm	0.1	PASS	ND	PROPOXUR	0	0.010	ppm	0.1	PASS	ND
ACEQUINOCYL	0.010	ppm	0.1	PASS	ND	PYRIDABEN	0	0.010	ppm	0.2	PASS	ND
ACETAMIPRID	0.010	ppm	0.1	PASS	ND	SPIROMESIFEN	0	0.010	ppm	0.1	PASS	ND
ALDICARB	0.010	ppm	0.1	PASS	ND	SPIROTETRAMAT	0	0.010	ppm	0.1	PASS	ND
AZOXYSTROBIN	0.010	ppm	0.1	PASS	ND	SPIROXAMINE	0	0.010	ppm	0.1	PASS	ND
BIFENAZATE	0.010	ppm	0.1	PASS	ND	TEBUCONAZOLE			ppm	0.1	PASS	ND
BIFENTHRIN	0.010	ppm	0.1	PASS	ND	THIACLOPRID			ppm	0.1	PASS	ND
BOSCALID	0.010	ppm	0.1	PASS	ND			0.010		0.5	PASS	ND
CARBARYL	0.010	ppm	0.5	PASS	ND	THIAMETHOXAM						
CARBOFURAN	0.010	ppm	0.1	PASS	ND	TRIFLOXYSTROBIN			ppm	0.1	PASS	ND
CHLORANTRANILIPROLE	0.010	ppm	1	PASS	ND	PENTACHLORONITROBENZENE (PCNB) *		0.010		0.15	PASS	ND
CHLORMEQUAT CHLORIDE	0.010	ppm	1	PASS	ND	PARATHION-METHYL *	0	0.010	PPM	0.1	PASS	ND
CHLORPYRIFOS	0.010	ppm	0.1	PASS	ND	CAPTAN *	0	0.070	PPM	0.7	PASS	ND
CLOFENTEZINE	0.010	ppm	0.2	PASS	ND	CHLORDANE *	0	0.010	PPM	0.1	PASS	ND
COUMAPHOS	0.010	ppm	0.1	PASS	ND	CHLORFENAPYR *	0	0.010	PPM	0.1	PASS	ND
DAMINOZIDE	0.010	ppm	0.1	PASS	ND	CYFLUTHRIN *	0	.050	PPM	0.5	PASS	ND
DIAZINON	0.010	ppm	0.1	PASS	ND	CYPERMETHRIN *	0	.050	PPM	0.5	PASS	ND
DICHLORVOS	0.010	ppm	0.1	PASS	ND		Veight:		raction date:		Extracted	hu
DIMETHOATE	0.010	ppm	0.1	PASS	ND).8845g		30/23 17:53:4	1	4056.450	by:
ETHOPROPHOS	0.010	ppm	0.1	PASS	ND	Analysis Method : SOP.T.30.101.FL (Gaine						
ETOFENPROX	0.010		0.1	PASS	ND	SOP.T.40.102.FL (Davie)					_ (,	
ETOXAZOLE	0.010	ppm	0.1	PASS	ND	Analytical Batch : DA067875PES				1:01/03/24 14		
FENHEXAMID	0.010	ppm	0.1	PASS	ND	Instrument Used :DA-LCMS-003 (PES)			Batch Date :	12/30/23 11:3	3:27	
FENOXYCARB	0.010		0.1	PASS	ND	Analyzed Date :12/31/23 11:56:45						
FENPYROXIMATE	0.010		0.1	PASS	ND	Dilution : 250 Reagent : 122623.R03; 040423.08; 12262	3 B01 · 122723	8 R 3 0-	122623 B02-	112123 B13-	122723 B01	
FIPRONIL	0.010		0.1	PASS	ND	Consumables : 3262501W	.5.1101, 122725		, 122025.1102,	112125.1(15,	122725.1101	
FLONICAMID	0.010		0.1	PASS	ND	Pipette : DA-093; DA-094; DA-219						
FLUDIOXONIL	0.010		0.1	PASS	ND	Testing for agricultural agents is performed u	utilizing Liquid (Chrom	natography Trip	le-Quadrupole	Mass Spectrom	etry in
HEXYTHIAZOX	0.010		0.1	PASS	ND	accordance with F.S. Rule 64ER20-39.						
IMAZALIL	0.010		0.1	PASS	ND		eight:		action date:		Extracted	by:
IMIDACLOPRID	0.010		0.4	PASS	ND		8845g		0/23 17:53:41		4056,450	
KRESOXIM-METHYL	0.010		0.1	PASS	ND	Analysis Method :SOP.T.30.151.FL (Gaine Analytical Batch : DA067876VOL	sville), SOP.1.:			SOP.1.40.151)1/03/24 12:05		
MALATHION	0.010		0.2	PASS	ND	Instrument Used :DA-GCMS-001				30/23 11:34:2		
METALAXYL	0.010		0.1	PASS	ND	Analyzed Date :01/02/24 13:24:30		50	pare rice,	50,25 2215 112		
METHIOCARB	0.010		0.1	PASS	ND	Dilution : 250						
METHOMYL	0.010		0.1	PASS	ND	Reagent: 122623.R03; 040423.08; 12142	3.R01; 112723	3.R15				
MEVINPHOS	0.010		0.1	PASS	ND	Consumables : 326250IW; 14725401						
MYCLOBUTANIL	0.010		0.1	PASS	ND	Pipette : DA-080; DA-146; DA-218						
NALED	0.010	ppm	0.25	PASS	ND	Testing for agricultural agents is performed u accordance with F.S. Rule 64ER20-39.	utilizing Gas Chi	romat	ography Triple	-Quadrupole M	ass Spectromet	ry in

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LDD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 01/03/24

PASSED

PASSED

3 01 5

FTH - Z - Face #92 WF 3.5g(1/8oz) FTH-Z-Face #92 Matrix : Flower Type: Flower-Cured

PASSED

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

FLUENT

82 NE 26th street Miami, FL, 33137, US Telephone: (305) 900-6266 Email: Taylor.Jones@getfluent.com Sample : DA31230006-005 Harvest/Lot ID: HBY-ZF#92-122823-C0123 Batch# : 2586 9380 6855

6700 Sampled : 12/30/23 Ordered : 12/30/23

Sample Size Received : 31.5 gram Total Amount : 413 units Completed : 01/03/24 Expires: 01/03/25 Sample Method : SOP.T.20.010

Page 4 of 5

Ţ.	Microk	pial			PAS	SED	స్తో	Мусс	toxin	S			PAS	SED
Analyte		LOD) Units	Result	Pass / Fail	Action Level	Analyte			LOD	Units	Result	Pass / Fail	Action Level
ASPERGILLU	S TERREUS			Not Present	PASS	Level	AFLATOXIN	B2		0.002	ppm	ND	PASS	0.02
ASPERGILLU				Not Present	PASS		AFLATOXIN	B1		0.002	ppm	ND	PASS	0.02
ASPERGILLU	S FUMIGATUS			Not Present	PASS		OCHRATOXI	NA		0.002	ppm	ND	PASS	0.02
ASPERGILLU	S FLAVUS			Not Present	PASS		AFLATOXIN	G1		0.002	ppm	ND	PASS	0.02
SALMONELL	A SPECIFIC GENE			Not Present	PASS		AFLATOXIN	G2		0.002	ppm	ND	PASS	0.02
ECOLI SHIGE	LLA			Not Present	PASS		Analyzed by:		Weight:	Extractio	n date:		Extracted	d by:
TOTAL YEAS	T AND MOLD	10	CFU/g	130	PASS	100000		35, 1440	0.8845g		17:53:41		4056,450	
Analyzed by: 3621, 3390, 58	5, 1440	Weight: 0.9309g	Extraction (12/30/23 1		Extracte 3336	d by:		od : SOP.T.30.10 FL (Davie), SOP.			.40.101.FL	(Gainesv	ille),	
Analysis Method : SOP.T.40.056C, SOP.T.40.058.FL, SOP.T.40.209.FL Analytical Batch : DA067873MIC Reviewed On : 01/03/24 16:54:55							Analytical Batch : DA067877MYC Reviewed On : 01/03/24 12:10:38 Instrument Used : N/A Batch Date : 12/30/23 11:34:59 Analyzed Date : 12/31/23 11:56:39 Date : 12/30/23 11:34:59							
Dilution : N/A	: 01/02/24 11:48:3 723.01; 110723.06		01; 081023.07	'; 091523.46; 10	0223.10		Mycotoxins tes	93; DA-094; DA- ting utilizing Liquic h F.S. Rule 64ER20	l Chromatograp)-39.		e-Quadrupol			
Analyzed by: 3621, 585, 144	Weig 0 0.930		traction date: 2/30/23 13:13		Extracted 3336	by:	Hg	Heav	y Met	als			PAS	SED
Analytical Batc Instrument Use			Reviewed O	9.FL n:01/02/24 10: :12/30/23 11:31			Metal		DMETALS	LOD	Units	Result	Pass / Fail PASS	Action Level
Analyzed Date	: N/A						ARSENIC	TAMINANT LOA	DMETALS	0.080 0.020	ppm ppm	ND ND	PASS	0.2
Dilution : N/A										0.020	ppm	ND	PASS	0.2
Reagent : 1107 Consumables :	723.01; 110723.06	5; 112423.RC)2				MERCURY			0.020	maa	ND	PASS	0.2
Pipette : N/A	N/A						LEAD			0.020	ppm	ND	PASS	0.5
	mold testing is perfor F.S. Rule 64ER20-39		MPN and tradit	ional culture based	l techniques	in	Analyzed by: 1022, 1879, 58	35, 1440	Weight: 0.2716g	Extraction			Extracter 1879	ed by:
							Analysis Meth Analytical Bat Instrument Us	od : SOP.T.30.08 ch : DA067868H ed : DA-ICPMS-0 : 12/30/23 16:1	2.FL, SOP.T.4 EA 04	0.082.FL Review	ed On : 01/ ate : 12/30	/02/24 10:		
							120623.R45	123.R17; 12262				22623.R0	5; 12202	3.R43;

Consumables : 179436; 210508058; 12594-247CD-247C

Pipette : DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 01/03/24

Page 5 of 5

FTH - Z - Face #92 WF 3.5g(1/8oz) FTH-Z-Face #92 Matrix : Flower Type: Flower-Cured

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US** (954) 368-7664

Certificate of Analysis

FLUENT

82 NE 26th street Miami, FL, 33137, US Telephone: (305) 900-6266 Email: Taylor.lones@getfluent.com Sample : DA31230006-005 Harvest/Lot ID: HBY-ZF#92-122823-C0123 Batch#: 2586 9380 6855 6700

Sampled : 12/30/23 Ordered : 12/30/23

Sample Size Received : 31.5 gram Total Amount : 413 units Completed : 01/03/24 Expires: 01/03/25 Sample Method : SOP.T.20.010

Filth/Foreign **Material**

Water Activity

PASSED

PASSED

PASSED

0.100	Units %	Result ND	P/F PASS	Action Level	Analyte Moisture Content		LOD 1.00	Units %	Result 12.43	P/F PASS	Action Leve 15				
/eight: A	Extraction N/A					Weight: 0.523g				Ex 43	tracted by: 71				
Analysis Method : SOP.T. 40.090 Analytical Batch : DA067890FIL Instrument Used : Filth/Foreign Material Microscope Analyzed Date : 12/30/23 17:25:48						Analysis Method : SOP.T.40.021 Analytical Batch : DA067883MOI Instrument Used : DA-003 Moisture Analyzer Analyzed Date : N/A					Reviewed On : 01/02/24 10:18:50 Batch Date : 12/30/23 11:47:06				
					Dilution : N/A Reagent : 031523.19; 02 Consumables : N/A Pipette : DA-066	0123.02									
		ection utilizir	ng naked eye	e and microscope	Moisture Content analysis u	tilizing loss-or	n-drying	technology	in accordance	with F.S. Rul	le 64ER20-39.				
	Jeight: A laterial Micro 18	Veight: Extraction IA N/A	Veight: Extraction date: A N/A Reviewed laterial Microscope Batch Dat 8 s performed by visual inspection utilizir	Veight: Extraction date: Extra A N/A N/A Reviewed On : 12/31 laterial Microscope Batch Date : 12/30/2 8 s performed by visual inspection utilizing naked eye	Veight: Extraction date: Extracted by: A N/A N/A Reviewed On : 12/31/23 20:45:56 Batch Date : 12/30/23 17:23:40 Isternal Microscope Batch Date : 12/30/23 17:23:40	Jeight: Extraction date: Extracted by: Analyzed by: A N/A N/A Analyzis Method : SOP.T. Areiral Microscope Batch Date : 12/30/23 17:23:40 Analysis Method : SOP.T. Analyzical Batch : DAte : 12/30/23 17:23:40 Analyzical Batch : DA067 Instrument Used : DA-00 Analyzed Date : N/A Dilution : N/A Reagent : 031523.19; 02 Consumables : N/A Pipette : DA-066 s performed by visual inspection utilizing naked eye and microscope Moisture Content analysis utilized analysis utili	Veight: Extraction date: Extracted by: Analyzed by: Weight: A N/A N/A Analyzed by: 4371, 585, 1440 0.523g Analysis Method : SOP.T.40.021 Analytical Batch : DA067883M01 Instrument Used : DA-003 Moisture / Analyzed Date : N/A 8 Dilution : N/A Dilution : N/A 8 Pipette : DA-066 N/A	Jeight: Extraction date: Extracted by: Analyzed by: Weight: Extracted by: A N/A N/A Analyzed by: 4371, 585, 1440 0.523g 12 Arriver of the second	Jeight: Extraction date: Extracted by: Analyzed by: Weight: Extraction date: JA N/A N/A Analyzed by: Weight: Extraction date: Aralyzed by: N/A 4371, 585, 1440 0.523g 12/30/23 14 Analyzical Batch: DA067883MOI Instrument Used: DA067883MOI Instrument Used: DA-003 Moisture Analyzer Analyzed Date: N/A Batch Date: 12/30/23 17:23:40 Dilution: N/A Batch Date: 12/30/23 17:23:40 Pilottion: N/A Batch Date: 12/30/23 17:23:40 Pilottion: N/A Batch Date: 12/30/23 17:23:40 Pilottion: N/A Pilottion: N/A Pilottion: Pilottion:	Veight: Extraction date: Extracted by: Analyzed by: Weight: Extraction date: Extraction date: A N/A N/A Analyzed by: 4371, 585, 1440 0.523g 12/30/23 14:18:03 Analysis Method : SOP.T.40.021 Analysis Method : SOP.T.40.021 Analysis Method : SOP.T.40.021 Analysis Method : SOP.T.40.021 8 Batch Date : 12/30/23 17:23:40 Instrument Used : DA-003 Moisture Analyzer Batch Date : 12/30/23 17:23:40 8 Dilution : N/A Pipette : DA-006 Dilution : N/A 9 Septormed by visual inspection utilizing naked eye and microscope Moisture Content analysis utilizing loss-on-drying technology in accordance of the set of th	Line Line				

Analyte LOD Units Result P/F Action Level Water Activity PASS 0.010 aw 0.550 0.65 Weight: 1.329g Extraction date: 12/30/23 13:55:01 Extracted by: 4371 Analyzed by: 4056, 4371, 585, 1440 Analysis Method : SOP.T.40.019 Reviewed On : 01/02/24 10:18:50 Analytical Batch : DA067881WAT Instrument Used : DA-028 Rotronic Hygropalm Batch Date : 12/30/23 11:42:39 Analyzed Date : 12/30/23 12:03:53 Dilution : N/A Reagent : 113021.09

Consumables : PS-14 Pipette : N/A

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 01/03/24