

Kaycha Labs

Miami Vibes Cartridge Concentrate 1g (90%)

Miami Vibes Matrix: Derivative Type: Distillate

Certificate of Analysis

COMPLIANCE FOR RETAIL

Sample: DA30705004-005 Harvest/Lot ID: 6546 0058 9189 4732

Batch#: 6546 0058 9189 4732

Cultivation Facility: Tampa Cultivation Processing Facility: Tampa Processing

Source Facility: Tampa Cultivation Seed to Sale# 0443 0751 8388 4939

Batch Date: 06/01/23

Sample Size Received: 16 gram Total Amount: 1912 units

> Retail Product Size: 1 gram Ordered: 07/03/23 Sampled: 07/03/23

Completed: 07/07/23

Sampling Method: SOP.T.20.010

PASSED

Pages 1 of 6

Jul 07, 2023 | FLUENT

82 NE 26th street Miami, FL, 33137, US

PRODUCT IMAGE

SAFETY RESULTS

Heavy Metals

Microbials

Mycotoxins

Residuals Solvents PASSED

Filth

CRN

0.959

9.59

0.001

Water Activity

THCV

0.649

6.49

0.001

%

Moisture

MISC.

TESTED

PASSED

CBC

1.578

15.78

0.001

%

Cannabinoid

Total THC 91.608% Total THC/Container: 916.08 mg

1.1

%

0.001

CBDA

ND

ND

%

0.001

Weight: 0.1046g

Total CBD

D8-THC

0.148

1.48

0.001

Total CBD/Container: 3 mg

CRG

1.391

13.91

0.001

Extraction date: 07/05/23 10:38:37

Reviewed On: 07/06/23 09:39:55 Batch Date: 07/05/23 09:41:33

%

CRGA

ND

ND

0.001

Total Cannabinoids 96.647%

CRDV

ND

ND

Extracted by

0.001

Total Cannabinoids/Container: 966.47 mg

D9-THC	THCA
	0.11
91.512	0.11

915.12

0.001

	%
Analyzed by: 3335, 1665, 585,	1440
Analysis Method	: SOP.T.40.031, SOP.T.3

Analytical Batch : DA062016POT Instrument Used: DA-LC-007 Analyzed Date: 07/05/23 10:50:52

ma/unit

LOD

Reagent: 062223.R01; 071222.35; 062223.R02; 020123.02

Consumables: 947.109; 15021042; 266969; CE0123; 115C4-1151; 61691-131C6-131C; R1KB14270

Pipette : DA-079; DA-108; DA-078

rum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

CBD

0.3

0.001

3

%

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA Testing 97164

Kaycha Labs

Miami Vibes Cartridge Concentrate 1g (90%)

Miami Vibes Matrix : Derivative Type: Distillate

PASSED

Certificate of Analysis

82 NE 26th street Miami, FL, 33137, US Telephone: (305) 900-6266 Email: Taylor.Jones@getfluent.com Sample : DA30705004-005 Harvest/Lot ID: 6546 0058 9189 4732

Batch#: 6546 0058 9189

Sampled: 07/03/23

Ordered: 07/03/23

Sample Size Received: 16 gram Total Amount : 1912 units

Completed: 07/07/23 Expires: 07/07/24

Sample Method: SOP.T.20.010

Page 2 of 6

Terpenes

TESTED

Terpenes LC		g/unit	% Result (%)	Terpenes		LOD (%)	mg/unit	%	Result (%)	
OTAL TERPENES 0.0	2 15.	02	1.502	FARNESENE			< 0.018	< 0.0018		
TOTAL TERPINEOL 0.0	2 ND		ND	ALPHA-HUMULENE		0.02	0.26	0.026		
ALPHA-BISABOLOL 0.0	2 0.4	7	0.047	VALENCENE		0.02	0.2	0.02		
ALPHA-PINENE 0.0	2 0.3	6	0.036	CIS-NEROLIDOL		0.02	ND	ND		
CAMPHENE 0.0	2 ND		ND	TRANS-NEROLIDOL		0.02	ND	ND		
ABINENE 0.0	2 ND		ND	CARYOPHYLLENE OXIDE		0.02	< 0.2	< 0.02		
BETA-PINENE 0.0	2 ND		ND	GUAIOL		0.02	ND	ND		
ETA-MYRCENE 0.0	2 2.1	.6	0.216	CEDROL		0.02	ND	ND		
LPHA-PHELLANDRENE 0.0	2 0.4	7	0.047	Analyzed by:	Weight:		Extraction da	ate:		Extracted by:
-CARENE 0.0	2 ND		ND	2076, 585, 1440	0.9324g		07/05/23 10:	:58:41		2076
LPHA-TERPINENE 0.0	2 0.2	4	0.024	Analysis Method : SOP.T.30.061						
IMONENE 0.0	2 0.9	3	0.093	Analytical Batch : DA062023TER Instrument Used : DA-GCMS-004					7/07/23 10:06:41 05/23 09:57:45	
UCALYPTOL 0.0	2 <0	.2	< 0.02	Analyzed Date: 07/06/23 10:09:			Batch	Date: 07/0	J5/23 U9:57:45	
CIMENE 0.0	2 1.9	8	0.198	Dilution: 10						
				Bildion 1 10						
AMMA-TERPINENE 0.0	2 <0	.2	< 0.02	Reagent: 020923.13						
			<0.02 ND	Consumables : 210414634; MKC	N9995; CE0123; R1KB	14270				
ABINENE HYDRATE 0.0	2 ND			Consumables : 210414634; MKC Pipette : N/A			AA.			
ABINENE HYDRATE 0.0 ERPINOLENE 0.0	2 ND 2 6.9	5	ND	Consumables : 210414634; MKC			trometry. For all f	Flower sampl	les, the Total Terpenes %	is dry-weight correcte
ABINENE HYDRATE 0.0 ERPINOLENE 0.0 ENCHONE 0.0	2 ND 2 6.9 4 ND	5	ND 0.695	Consumables : 210414634; MKC Pipette : N/A			trometry. For all f	Flower sampl	les, the Total Terpenes %	is dry-weight correcte
ABINENE HYDRATE 0.0 ERPINOLENE 0.6 ENCHONE 0.0 NALOOL 0.0	2 ND 2 6.9 4 ND 2 0.2	5	ND 0.695 ND	Consumables : 210414634; MKC Pipette : N/A			trometry. For all f	Flower sampl	les, the Total Terpenes %	is dry-weight correcte
ABINENE HYDRATE 0.0 ERPINOLENE 0.0 ENCHONE 0.0 NALOOL 0.0 ENCHYL ALCOHOL 0.0	2 ND 2 6.9 4 ND 2 0.2 2 <0	1 .2	ND 0.695 ND 0.021	Consumables : 210414634; MKC Pipette : N/A			trometry. For all F	Flower sampl	les, the Total Terpenes %	is dry-weight correcte
ABINENE HYDRATE 0.0 ERPINOLENE 0.0 ENCHONE 0.0 INALOOL 0.0 ENCHYL LACOHOL 0.0 OPULEGOL 0.0	2 ND 2 6.9 4 ND 2 0.2 2 <0 2 ND	1 .2	ND 0.695 ND 0.021 <0.02	Consumables : 210414634; MKC Pipette : N/A			trometry. For all f	Flower sampl	les, the Total Terpenes %	i is dry-weight correcte
ABINENE HYDRATE 0.0 ERPINOLENE 0.0 ENCHONE 0.0 INALOOL 0.0 ENCHYL ALCOHOL 0.0 ENCHYL ALCOHOL 0.0 ENCHYL ALCOHOL 0.0 MMPHOR 0.0	2 ND 2 6.9 4 ND 2 0.2 2 <0 2 ND 6 <0	1 .2 .6	ND 0.695 ND 0.021 < 0.02 ND	Consumables : 210414634; MKC Pipette : N/A			trometry. For all F	Flower sampl	les, the Total Terpenes %	i is dry-weight correcte
ABINENE HYDRATE 0.0 ERPINOLENE 0.0 ENCHONE 0.0 NALOOL 0.0 ENCHYL ALCOHOL 0.0 OPULEGOL 0.0 MMPHOR 0.0 DIOBORNEOL 0.0	2 ND 2 6.9 4 ND 2 0.2 2 <0 2 ND 6 <0 2 <0	.2	ND 0.695 ND 0.021 <0.02 ND <<0.06	Consumables : 210414634; MKC Pipette : N/A			trometry. For all f	Flower sampl	ies, the Total Terpenes %	is dry-weight correcte
ABINENE HYDRATE 0.0 ERPINOLENE 0.0 ENCHONE 0.0 INALOOL 0.0 ENCHYL LACHOL 0.0 ENCHYL LACHOL 0.0 MAPPIOR 0.0 ENGENERAL 0.0	2 ND 2 6.9 4 ND 2 0.2 2 <0 2 ND 6 <0 2 <0 4 ND	.6	ND 0.695 ND 0.021 <0.02 ND <0.06 <0.06 <0.02	Consumables : 210414634; MKC Pipette : N/A			trometry. For all I	Flower sampl	les, the Total Terpenes %	i is dry-weight correcte
ABINENE HYDRATE 0.0 ERPINOLENE 0.0 ENCHONE 0.0 INALOOL 0.0 ENCHYL ALCOHOL 0.0 ENCHYL ALCOHOL 0.0 AMPHOR 0.0 ENDEROL 0.0 EXAMPTORTHOL 0.0	2 ND 2 6.9 4 ND 2 0.2 2 <0 2 ND 6 <0 2 <0 4 ND 2 <0	.6 .2	ND 0.695 ND 0.021 <0.02 ND <0.06 <0.02 ND <0.006 <0.02 ND ND <0.06 <0.00 ND	Consumables : 210414634; MKC Pipette : N/A			trometry. For all f	Flower sampl	les, the Total Terpenes %	s is dry-weight correcte
ABINENE HYDRATE 0.0 ERPINOLENE 0.0 ONALOOL 0.0 ONALOOL 0.0 OPPULEGOL 0.0 AMPHOR 0.0 ORNEOL 0.0 CRAPPOTOTOMORE 0.0 ORNEOL 0.0 EXAMPTOTOMORE 0.0 ORNEOL 0	2 ND 2 6.9 4 ND 2 0.2 2 <0 2 ND 6 <0 2 <0 4 ND 2 <0 2 ND 6 <0 2 <0 4 ND 2 <0 2 ND	.62	ND 0.695 ND 0.021 <0.02 ND <0.06 <0.02 <0.00 ND <0.02 ND <0.06 <0.02 ND <0.	Consumables : 210414634; MKC Pipette : N/A			trometry. For all f	Flower sampl	les, the Total Terpenes %	is is dry-weight correcte
ABINENE HYDRATE 0.0 ERPINOLENE 0.0 ENCHONE 0.0 INALODL 0.0 ENCHYL ALCOHOL 0.0 AMPHOR 0.0 ENBOROL 0.0 ENBOROL 0.0 EXAHYDROTHYMOL 0.0 EXAHYDROTHYMOL 0.0 EXAHYDROTHYMOL 0.0 EXAHYDROTHYMOL 0.0 EROL 0.0 ULEGONE 0.0 ULEGONE 0.0	2 ND 2 6.9 4 ND 2 0.2 2 <0 2 ND 6 <0 2 <0 4 ND 2 <0 2 ND 6 <0 2 <0 4 ND 2 <0 2 ND 2 ND	.6 .2	ND 0.695 ND 0.021 <0.02 ND <0.06 <0.06 <0.02 ND <0.06 <0.02 ND ND <0.002 ND ND	Consumables : 210414634; MKC Pipette : N/A			trometry. For all 8	Flower sampl	iles, the Total Terpenes %	i is dry-weight correcte
ABINENE HYDRATE 0.0 ERPINOLENE 0.0 ERPINOLENE 0.0 ENCHOME 0.0 ENCHUL ALCOHOL 0.0 ENCHUL 0.0 ENCHUL 0.0 ENCHUL 0.0 EXAHYDROTHYMOL 0.0 EXAHYDROTHYMOL 0.0 EROL 0.0	2 NDD 2 6.9.2 4 NDD 2 0.2.2 2 0.2.2 2 NDD 6 <0.2 2 <0.2 2 NDD 2 ND	.6 .2 .2	ND 0.695 ND 0.021 <0.02 ND <0.06 <0.02 ND <0.002 ND <0.002 ND	Consumables : 210414634; MKC Pipette : N/A			trometry. For all å	Flower sampl	les, the Total Terpenes %	s is dry-weight correcte
ABINENE HYDRATE 0.0 REPINOLENE 0.0 INALOOL 0.0 INALOOL 0.0 SPULEGOL 0.0 AMPHOR 0.0 SOBORNEOL 0.0 SOBORNEOL 0.0 SOBORNEOL 0.0 SIEROLL 0.0 LEXAMPTORTHYMOL 0.0 LEXAMPTORTHYMOL 0.0 LEXAMPTORTHYMOL 0.0 LEROL 0.0	22 NDD 22 6.9.2 2 6.9.2 2 0.2 2 0.2 2 0.2 2 ND 6 6 0 0 0 0 2 0 0 0 2 ND	.6 .2	ND 0.695 ND 0.021 <0.02 ND <0.06 <0.06 <0.02 ND <0.02 ND ND ND ND ND ND ND ND	Consumables : 210414634; MKC Pipette : N/A			trometry. For all f	Flower sampl	les, the Total Terpenes %	is dry-weight correcte
ABINENE HYDRATE 0.0 REPINOLENE 0.0 RINLODL 0.0 RINLODL 0.0 ROPPLIEGOL 0.0 RAPPHOR 0.0 ROPPLIEGOL 0.0 REPOL 0.0 REPO	22 NDD 22 6.9.2 2 0.2.2 2 0.2.2 2 ND 6 0 0.2 2 ND 2 N	.6 .2	ND 0.695 ND 0.021 <0.02 ND <0.06 <0.06 <0.02 ND ND ND ND ND ND ND ND ND ND ND ND N	Consumables : 210414634; MKC Pipette : N/A			trometry. For all f	Flower sampl	les, the Total Terpenes %	s is dry-weight corrects

Total (%)

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs

Miami Vibes Cartridge Concentrate 1g (90%)

Miami Vibes Matrix : Derivative Type: Distillate

PASSED

Certificate of Analysis

82 NE 26th street Miami, FL, 33137, US Telephone: (305) 900-6266 Email: Taylor.lones@getfluent.com Sample : DA30705004-005 Harvest/Lot ID: 6546 0058 9189 4732

Batch#: 6546 0058 9189

Sampled: 07/03/23 Ordered: 07/03/23

Sample Size Received: 16 gram Total Amount : 1912 units

Completed: 07/07/23 Expires: 07/07/24

Sample Method: SOP.T.20.010

Page 3 of 6

Pesticides

P	A	S	S	Ē	D

esticide	LOD		Action Level	Pass/Fail		Pesticide		LOD	Units	Action Level	Pass/Fail	Resu
OTAL CONTAMINANT LOAD (PESTICIDES)	0.01	ppm	5	PASS	ND	OXAMYL		0.01	ppm	0.5	PASS	ND
OTAL DIMETHOMORPH	0.01	ppm	0.2	PASS	ND	PACLOBUTRAZOL	Q	0.01	ppm	0.1	PASS	ND
OTAL PERMETHRIN	0.01	ppm	0.1	PASS	ND	PHOSMET	2	0.01	ppm	0.1	PASS	ND
OTAL PYRETHRINS	0.01	ppm	0.5	PASS	ND	PIPERONYL BUTOXIDE		0.01	ppm	3	PASS	ND
OTAL SPINETORAM	0.01	ppm	0.2	PASS	ND	PRALLETHRIN		0.01	ppm	0.1	PASS	ND
OTAL SPINOSAD	0.01	ppm	0.1	PASS	ND			0.01		0.1	PASS	ND
BAMECTIN B1A	0.01	ppm	0.1	PASS	ND	PROPICONAZOLE			ppm			
СЕРНАТЕ	0.01	ppm	0.1	PASS	ND	PROPOXUR		0.01	ppm	0.1	PASS	ND
CEQUINOCYL	0.01	ppm	0.1	PASS	ND	PYRIDABEN		0.01	ppm	0.2	PASS	ND
CETAMIPRID	0.01	ppm	0.1	PASS	ND	SPIROMESIFEN		0.01	ppm	0.1	PASS	ND
LDICARB	0.01	ppm	0.1	PASS	ND	SPIROTETRAMAT	///	0.01	ppm	0.1	PASS	ND
ZOXYSTROBIN	0.01	ppm	0.1	PASS	ND	SPIROXAMINE	7///	0.01	ppm	0.1	PASS	ND
FENAZATE	0.01	ppm	0.1	PASS	ND	TEBUCONAZOLE	MA	0.01	ppm	0.1	PASS	ND
IFENTHRIN	0.01	ppm	0.1	PASS	ND	THIACLOPRID		0.01	ppm	0.1	PASS	ND
OSCALID	0.01	ppm	0.1	PASS	ND	THIAMETHOXAM		0.01	ppm	0.5	PASS	ND
ARBARYL	0.01	ppm	0.5	PASS	ND	TRIFLOXYSTROBIN		0.01	ppm	0.1	PASS	ND
ARBOFURAN	0.01	ppm	0.1	PASS	ND			0.05	PPM	0.15	PASS	ND
HLORANTRANILIPROLE	0.01	ppm	1	PASS	ND	PENTACHLORONITROBENZENE (F						
HLORMEQUAT CHLORIDE	0.01	ppm	1	PASS	ND	PARATHION-METHYL *		0.05	PPM	0.1	PASS	ND
HLORPYRIFOS	0.01	ppm	0.1	PASS	ND	CAPTAN *		0.35	PPM	0.7	PASS	ND
LOFENTEZINE	0.01	ppm	0.2	PASS	ND	CHLORDANE *		0.05	PPM	0.1	PASS	ND
DUMAPHOS	0.01	ppm	0.1	PASS	ND	CHLORFENAPYR *		0.05	PPM	0.1	PASS	ND
AMINOZIDE	0.01	ppm	0.1	PASS	ND	CYFLUTHRIN *	$\wedge \times$	0.25	PPM	0.5	PASS	ND
IAZINON	0.01	ppm	0.1	PASS	ND	CYPERMETHRIN *		0.25	PPM	0.5	PASS	ND
ICHLORVOS	0.01	ppm	0.1	PASS	ND	Analyzed by: We	eiaht: I	vtra	tion date:		Extract	nd by
IMETHOATE	0.01	ppm	0.1	PASS	ND				23 14:14:2		450	eu by.
THOPROPHOS	0.01	ppm	0.1	PASS	ND	Analysis Method : SOP.T.30.101.FL					T.40.101.FL	Gaines
TOFENPROX	0.01	ppm	0.1	PASS	ND	SOP.T.40.102.FL (Davie)	(,	1 /		(,,		
TOXAZOLE	0.01	ppm	0.1	PASS	ND	Analytical Batch : DA062012PES				On:07/06/2		
ENHEXAMID	0.01	ppm	0.1	PASS	ND	Instrument Used : DA-LCMS-003 (F	PES)		Batch Dat	te:07/05/23	09:37:28	
ENOXYCARB	0.01	ppm	0.1	PASS	ND	Analyzed Date : N/A						
ENPYROXIMATE	0.01	ppm	0.1	PASS	ND	Dilution: 250	na. 001422 pag	. 0.00	22 000. 00	20522 026. 0	70F22 B01. 0	40521.1
PRONIL	0.01	ppm	0.1	PASS	ND	Reagent: 070323.R01; 070523.R0 Consumables: 326250IW	13; U01423.R23	; 062	323.RU8; Ut	00523.R26; U	70523.R01; 0	40521.
LONICAMID	0.01	ppm	0.1	PASS	ND	Pipette : DA-093: DA-094: DA-219						
LUDIOXONIL	0.01	ppm	0.1	PASS	ND	Testing for agricultural agents is perf	formed utilizing	Liquid	Chromatoo	raphy Triple-0	Quadrupole M.	ass
EXYTHIAZOX	0.01	ppm	0.1	PASS	ND	Spectrometry in accordance with F.S			\		(
MAZALIL	0.01	ppm	0.1	PASS	ND	Analyzed by: Wei	ght: E	ctract	ion date:		Extracte	ed by:
IIDACLOPRID	0.01	ppm	0.4	PASS	ND	450, 585, 1440 0.28	-		3 14:14:26		450	
RESOXIM-METHYL	0.01	ppm	0.1	PASS	ND	Analysis Method: SOP.T.30.151.FL	L (Gainesville),					- /
ALATHION	0.01	ppm	0.2	PASS	ND	Analytical Batch : DA062015VOL				n:07/06/23 1		
ETALAXYL	0.01	ppm	0.1	PASS	ND	Instrument Used : DA-GCMS-001 Analyzed Date : 07/05/23 14:15:21		В	atch Date :	07/05/23 09:	40:49	
ETHIOCARB	0.01	ppm	0.1	PASS	ND	Dilution: 250						
ETHOMYL	0.01	ppm	0.1	PASS	ND	Reagent: 061423.R23; 040521.11	: 061223.R25	0612	23.R24			
EVINPHOS	0.01	ppm	0.1	PASS	ND	Consumables : 326250IW; 147254						
	0.01	ppm	0.1	PASS	ND	Pipette: DA-080; DA-146; DA-218						
YCLOBUTANIL								Gas C				

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs

Miami Vibes Cartridge Concentrate 1g (90%)

Miami Vibes Matrix : Derivative Type: Distillate

Certificate of Analysis

82 NE 26th street Miami, FL, 33137, US Telephone: (305) 900-6266 Email: Taylor.lones@getfluent.com Sample : DA30705004-005 Harvest/Lot ID: 6546 0058 9189 4732

Batch#: 6546 0058 9189

Sampled: 07/03/23 Ordered: 07/03/23

Sample Size Received: 16 gram Total Amount: 1912 units

Completed: 07/07/23 Expires: 07/07/24 Sample Method: SOP.T.20.010

Reviewed On: 07/06/23 13:51:39

Batch Date: 07/05/23 12:07:04

PASSED

Page 4 of 6

Residual Solvents

PASSED

Solvents	LOD	Units	Action Level	Pass/Fail	Result
1,1-DICHLOROETHENE	0.8	ppm	8	PASS	ND
1,2-DICHLOROETHANE	0.2	ppm	2	PASS	ND
2-PROPANOL	50	ppm	500	PASS	ND
ACETONE	75	ppm	750	PASS	ND
ACETONITRILE	6	ppm	60	PASS	ND
BENZENE	0.1	ppm	1	PASS	ND
BUTANES (N-BUTANE)	500	ppm	5000	PASS	ND
CHLOROFORM	0.2	ppm	2	PASS	ND
DICHLOROMETHANE	12.5	ppm	125	PASS	ND
ETHANOL	500	ppm	5000	PASS	ND
ETHYL ACETATE	40	ppm	400	PASS	ND
ETHYL ETHER	50	ppm	500	PASS	ND
ETHYLENE OXIDE	0.5	ppm	5	PASS	ND
HEPTANE	500	ppm	5000	PASS	ND
METHANOL	25	ppm	250	PASS	ND
N-HEXANE	25	ppm	250	PASS	ND
PENTANES (N-PENTANE)	75	ppm	750	PASS	ND
PROPANE	500	ppm	5000	PASS	ND
TOLUENE	15	ppm	150	PASS	ND
TOTAL XYLENES	15	ppm	150	PASS	ND
TRICHLOROETHYLENE	2.5	ppm	25	PASS	ND
Analyzed by: 850, 585, 1440	Weight: 0.0221g	Extraction date: 07/05/23 13:53:		//	Extracted by: 850

Analysis Method : SOP.T.40.041.FL Analytical Batch : DA062028SOL Instrument Used: DA-GCMS-003 Analyzed Date: 07/05/23 15:45:03

Dilution: 1 Reagent: 030923.29

Consumables: R2017.167; G201.167 Pipette: DA-309 25 uL Syringe 35028

Residual solvents analysis is performed utilizing Gas Chromatography Mass Spectrometry in accordance with with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs

Miami Vibes Cartridge Concentrate 1g (90%)

Miami Vibes Matrix : Derivative

Type: Distillate

Certificate of Analysis

PASSED

82 NE 26th street Miami, FL, 33137, US Telephone: (305) 900-6266 Email: Taylor.lones@getfluent.com Sample : DA30705004-005 Harvest/Lot ID: 6546 0058 9189 4732

Batch#: 6546 0058 9189

Sampled: 07/03/23 Ordered: 07/03/23

Sample Size Received: 16 gram Total Amount: 1912 units Completed: 07/07/23 Expires: 07/07/24 Sample Method: SOP.T.20.010

Page 5 of 6

Microbial

PASSED Mycotoxins

PASSED

Extracted by:

Analyte	LOD	Units	Result	Pass / Fail	Action Level	Analyte		LOD	Units	Result
ASPERGILLUS TERREUS			Not Present	PASS		AFLATOXIN B2		0.002	ppm	ND
ASPERGILLUS NIGER			Not Present	PASS		AFLATOXIN B1		0.002	ppm	ND
ASPERGILLUS FUMIGATUS			Not Present	PASS		OCHRATOXIN A		0.002	ppm	ND
ASPERGILLUS FLAVUS			Not Present	PASS		AFLATOXIN G1		0.002	ppm	ND
SALMONELLA SPECIFIC GENE			Not Present	PASS		AFLATOXIN G2		0.002	ppm	ND
ECOLI SHIGELLA			Not Present	PASS		Analyzed by:	Weight:	Extraction da	ato:	- 18
TOTAL YEAST AND MOLD	10	CFU/g	<10	PASS	100000	3379, 585, 1440	0.2889g	07/05/23 14:		
Analyzed by	ada E	when at lam ala	has	Evetus ato d	laver	Augusta Markhard COD	T 20 101 FL /Ca	neguille) CODT	40 101 FI	(Cainas

3390, 3621, 585, 1440 0.947g 07/05/23 09:56:35 3336,3621

Analysis Method: SOP.T.40.056C, SOP.T.40.058.FL, SOP.T.40.209.FL Reviewed On: 07/06/23

Analytical Batch: DA062001MIC

Instrument Used: PathogenDx Scanner DA-111.Applied Biosystems Batch Date: 07/05/23 MiniAmp Thermocycler DA-190,fisherbrand Isotemp Heat Block DA-020,fisherbrand Isotemp Heat Block DA-049,Fisher Scientific Isotemp Heat Block DA-021

Analyzed Date: 07/05/23 12:31:16

Reagent: 050223.42; 062323.R18; 092122.01; 092122.09

Consumables: 7562003019 Pipette: N/A

0					
Analyte	LOD	Units	Result	Pass / Fail	Action
AFLATOXIN B2	0.002	ppm	ND	PASS	0.02
AFLATOXIN B1	0.002	ppm	ND	PASS	0.02
OCHRATOXIN A	0.002	ppm	ND	PASS	0.02
AFLATOXIN G1	0.002	ppm	ND	PASS	0.02
AFLATOYIN G2	0.002	nnm	ND	PASS	0.02

Analysis Method : SOP.T.30.101.FL (Gainesville), SOP.T.40.101.FL (Gainesville), SOP.T.30.102.FL (Davie), SOP.T.40.102.FL (Davie)

Analytical Batch: DA062014MYC Reviewed On: 07/06/23 12:41:48 Instrument Used: N/A Batch Date: 07/05/23 09:40:47 Analyzed Date: N/A

Dilution: 250

Reagent: 070323.R01; 070523.R03; 061423.R23; 062823.R08; 060523.R26; 070523.R01; 040521.11

Consumables: 326250IW Pipette: DA-093; DA-094; DA-219

Mycotoxins testing utilizing Liquid Chromatography with Triple-Quadrupole Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

Extracted by: 3336,3621

Analyzed by: 3336, 3621, 585, 1440 0.947g N/A

Analysis Method: SOP.T.40.208 (Gainesville), SOP.T.40.209.FL Analytical Batch : DA062004TYM Instrument Used : Incubator (25-27C) DA-096 Reviewed On: 07/07/23 13:23:51 Batch Date: 07/05/23 08:29:45 Analyzed Date: 07/05/23 11:15:02

Extraction date:

Weight

Dilution: 10 Reagent: 050223.42; 060723.R45

Consumables : N/A Pipette : N/A

Total yeast and mold testing is performed utilizing MPN and traditional culture based techniques in accordance with F.S. Rule 64ER20-39.

Heavy Metals

PASSED

Metal	LOD	Units	Result	Pass / Fail	Action Level
TOTAL CONTAMINANT LOAD METAL	.s 0.08	ppm	ND	PASS	1.1
ARSENIC	0.02	ppm	ND	PASS	0.2
CADMIUM	0.02	ppm	ND	PASS	0.2
MERCURY	0.02	ppm	ND	PASS	0.2
LEAD	0.02	ppm	ND	PASS	0.5
Analyzed by: Weight: 1022, 585, 1440 0.2746g	Extraction dat 07/05/23 11:0		E > 38	y:	

Analysis Method: SOP.T.30.082.FL, SOP.T.40.082.FL

Analytical Batch: DA062008HEA Instrument Used : DA-ICPMS-003 Analyzed Date: 07/05/23 14:02:39 Reviewed On: 07/06/23 12:34:03 Batch Date: 07/05/23 08:57:18

Dilution: 50

Reagent: 061523.R17; 062723.R18; 063023.R15; 070123.R03; 063023.R13; 063023.R14; 061923.R19; 050923.01; 062823.R15; 061323.01

Consumables: 179436; 15021042; 210508058

Pipette: DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA Testing 97164

Kaycha Labs

Miami Vibes Cartridge Concentrate 1g (90%)

Miami Vibes Matrix : Derivative Type: Distillate

PASSED

Page 6 of 6

Certificate of Analysis

82 NE 26th street Miami, FL, 33137, US Telephone: (305) 900-6266 Email: Taylor.lones@getfluent.com Sample : DA30705004-005 Harvest/Lot ID: 6546 0058 9189 4732

Batch#: 6546 0058 9189

Sampled: 07/03/23 Ordered: 07/03/23

Sample Size Received: 16 gram Total Amount: 1912 units Completed: 07/07/23 Expires: 07/07/24 Sample Method: SOP.T.20.010

Filth/Foreign **Material**

PASSED

Reviewed On: 07/05/23 10:46:36

Analyte LOD Units Result **Action Level** Filth and Foreign Material % ND PASS 0.1

Analyzed by: 1879, 1440 Extracted by: NA N/A N/A

Analysis Method: SOP.T.40.090

Analytical Batch: DA062024FIL
Instrument Used: Filth/Foreign Material Microscope

Batch Date: 07/05/23 10:04:43 $\textbf{Analyzed Date}: \ \mathbb{N}/\mathbb{A}$

Dilution: N/AReagent: N/A Pipette: N/A

Filth and foreign material inspection is performed by visual inspection utilizing naked eye and microscope technologies in accordance with F.S. Rule 64ER20-39.

Water Activity

PASSED

Analyte LOD Units Result P/F **Action Level** PASS Water Activity 0.1 aw 0.522 0.85 Extraction date: 07/05/23 13:08:29 Extracted by: 4056 Analyzed by: 4056, 585, 1440

Analysis Method: SOP.T.40.019 Analytical Batch: DA062026WAT

Instrument Used : DA-028 Rotronic Hygropalm

Analyzed Date : N/A Dilution: N/A

Reagent: 050923.03 Consumables : PS-14 Pipette: N/A Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

Reviewed On: 07/05/23 16:21:17

Batch Date: 07/05/23 10:15:36

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA Testing 97164

