

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664

Certificate of Analysis

COMPLIANCE FOR RETAIL

Kaycha Labs

Dark Chocolate Bar 10 PC Dark Chocolate Bar Matrix: Edible Type: Chocolate

PASSED

Sample:DA30624006-005 Harvest/Lot ID: 8410 8825 9346 9950 Batch#: 8410 8825 9346 9950 Cultivation Facility: Tampa Cultivation Processing Facility : Tampa Processing Source Facility : Tampa Cultivation Seed to Sale# 7120 1248 2962 4418 Batch Date: 04/06/23 Sample Size Received: 560 gram Total Amount: 3920 units Retail Product Size: 40.7675 gram Ordered: 06/24/23 Sampled: 06/24/23 Sampled: 06/27/23 Sampling Method: SOP.T.20.010

Jun 27, 2023 | FLUENT

82 NE 26th street Miami, FL, 33137, US

Pages 1 of 5 PRODUCT IMAGE SAFETY RESULTS MISC. Z C Ш 3 Pesticides Heavy Metals Microbials **Mycotoxins Residuals Solvents** Filth Water Activity Moisture Terpenes 驟 1 PASSED PASSED PASSED NOT TESTED PASSED PASSED PASSED PASSED PASSED Cannabinoid Total THC **Total CBD Total Cannabinoids** 0.229% ND .248% n Total THC/Container : 93.358 mg Total CBD/Container : 0 mg Total Cannabinoids/Container : 101.103 mg тнса CBD CBDV CBC CBDA D8-THC CBG CBGA CBN тнсу D9-THO 0.229 ND ND ND ND 0.011 ND 0.003 0.002 ND 0.003 93.357 ND ND ND ND 4.484 1.223 0.815 1.223 ND ND ma/unit 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 LOD % % % % % % % % % % % Weight: 3.0009g Extracted by: 1665 Analyzed by: 1665, 585, 4044 Extraction date: 06/26/23 10:20:11 Analysis Method : SOP.T.40.031, SOP.T.30.031 Analytical Batch : DA061753POT Instrument Used : DA-LC-007 Analyzed Date : 06/26/23 10:22:50 Reviewed On : 06/27/23 11:27:31 Batch Date : 06/25/23 16:48:12 Dilution: 40 Reagent : 062323.R04; 071222.01; 062323.R02 Consumables : 280670723; CE0123; R1KB14270 Pipette : DA-079; DA-108; DA-078 Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 06/27/23

4131 SW 47th AVENUE SUITE 1408

Certificate of Analysis

Sample : DA30624006-005 Harvest/Lot ID: 8410 8825 9346 9950

Batch#: 8410 8825 9346

Sampled : 06/24/23

Ordered : 06/24/23

Sample Size Received : 560 gram

Sample Method : SOP.T.20.010

Completed : 06/27/23 Expires: 06/27/24

Total Amount : 3920 units

DAVIE, FL, 33314, US (954) 368-7664

Kaycha Labs

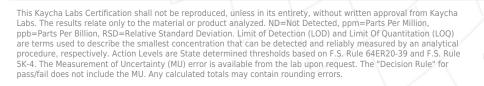
Dark Chocolate Bar 10 PC Dark Chocolate Bar Matrix : Edible Type: Chocolate

PASSED

Page 2 of 5

R S

82 NE 26th street Miami, FL, 33137, US


Telephone: (305) 900-6266

Email: Taylor.lones@getfluent.com

FLUENT

Pesticides

Pesticide	LOD	Units	Action Level	Pass/Fail		Pesticide		LOD	Units	Action Level	Pass/Fail	Result	
TOTAL CONTAMINANT LOAD (PESTICIDES)	0.01	ppm	30	PASS	ND	OXAMYL		0.01	ppm	0.5	PASS	ND	
TOTAL DIMETHOMORPH	0.01	ppm	3	PASS	ND	PACLOBUTRAZOL		0.01	ppm	0.1	PASS	ND	
TOTAL PERMETHRIN	0.01	ppm	1	PASS	ND	PHOSMET		0.01	ppm	0.2	PASS	ND	
TOTAL PYRETHRINS	0.01	ppm	1	PASS	ND	PIPERONYL BUTOXIDE		0.01	ppm	3	PASS	ND	
TOTAL SPINETORAM	0.01	ppm	3	PASS	ND			0.01	ppm	0.4	PASS	ND	
TOTAL SPINOSAD	0.01	ppm	3	PASS	ND	PRALLETHRIN				1	PASS	ND	
ABAMECTIN B1A	0.01	ppm	0.3	PASS	ND	PROPICONAZOLE		0.01	ppm				
АСЕРНАТЕ	0.01	ppm	3	PASS	ND	PROPOXUR		0.01	ppm	0.1	PASS	ND	
ACEQUINOCYL	0.01	ppm	2	PASS	ND	PYRIDABEN		0.01	ppm	3	PASS	ND	
ACETAMIPRID	0.01	ppm	3	PASS	ND	SPIROMESIFEN		0.01	ppm	3	PASS	ND	
ALDICARB	0.01	ppm	0.1	PASS	ND	SPIROTETRAMAT		0.01	ppm	3	PASS	ND	
AZOXYSTROBIN	0.01	ppm	3	PASS	ND	SPIROXAMINE		0.01	ppm	0.1	PASS	ND	
BIFENAZATE	0.01	ppm	3	PASS	ND	TEBUCONAZOLE		0.01	ppm	1	PASS	ND	
BIFENTHRIN	0.01	ppm	0.5	PASS	ND	THIACLOPRID		0.01	ppm	0.1	PASS	ND	
BOSCALID	0.01	ppm	3	PASS	ND	THIAMETHOXAM		0.01	ppm	1	PASS	ND	
CARBARYL	0.01	ppm	0.5	PASS	ND			0.01	ppm	3	PASS	ND	
CARBOFURAN	0.01	ppm	0.1	PASS	ND	TRIFLOXYSTROBIN							
CHLORANTRANILIPROLE	0.01	ppm	3	PASS	ND	PENTACHLORONITROBENZE	ENE (PCNB) *	0.01	PPM	0.2	PASS	ND	
CHLORMEQUAT CHLORIDE	0.01	ppm	3	PASS	ND	PARATHION-METHYL *		0.01	PPM	0.1	PASS	ND	
CHLORPYRIFOS	0.01	ppm	0.1	PASS	ND	CAPTAN *		0.07	PPM	3	PASS	ND	
CLOFENTEZINE	0.01	ppm	0.5	PASS	ND	CHLORDANE *		0.01	PPM	0.1	PASS	ND	
COUMAPHOS	0.01	ppm	0.1	PASS	ND	CHLORFENAPYR *		0.01	PPM	0.1	PASS	ND	
DAMINOZIDE	0.01	ppm	0.1	PASS	ND	CYFLUTHRIN *		0.05	PPM	1	PASS	ND	
DIAZINON	0.01	ppm	3	PASS	ND	CYPERMETHRIN *		0.05	PPM	1	PASS	ND	
DICHLORVOS	0.01	ppm	0.1	PASS	ND	Analyzed by:	Weight:	Extract	ion date:		Extracted	bu	
DIMETHOATE	0.01	ppm	0.1	PASS	ND	585, 3379, 4044	1.016a		3 15:11:00		450,585	by.	
THOPROPHOS	0.01	ppm	0.1	PASS	ND	Analysis Method : SOP.T.30.				(Davie), SOP		Gainesvi	
ETOFENPROX	0.01	ppm	0.1	PASS	ND	SOP.T.40.102.FL (Davie)		Some), Sol 1.50.102.1 E (Bavie), Sol 11.40.101.1 E (Gain					
ETOXAZOLE	0.01	ppm	1.5	PASS	ND	Analytical Batch : DA061739				On :06/27/2		3 21:25:11	
FENHEXAMID	0.01	ppm	3	PASS	ND	Instrument Used : DA-LCMS-			Batch Dat	e:06/25/23	14:00:42		
FENOXYCARB	0.01	ppm	0.1	PASS	ND	Analyzed Date : 06/27/23 18	:16:12						
FENPYROXIMATE	0.01	ppm	2	PASS	ND	Dilution : 250	21 11, 061022	DO1. 0C222	0.000	022 001. 00	0522 026- 062	122 00	
FIPRONIL	0.01	ppm	0.1	PASS	ND	Reagent : 061423.R23; 0405 Consumables : 6697075-02	21.11; 061923	.RU1; 06222	23.R12; 002	023.R01; 06	U523.K26; U62	2123.RU.	
FLONICAMID	0.01	ppm	2	PASS	ND	Pipette : DA-093; DA-094; DA	A-219						
FLUDIOXONIL	0.01	ppm	3	PASS	ND	Testing for agricultural agents		ilizina Liauid	Chromatog	raphy Triple-0	Quadrupole Ma	SS	
HEXYTHIAZOX	0.01	ppm	2	PASS	ND	Spectrometry in accordance w	ith F.S. Rule 64	R20-39.					
MAZALIL	0.01	ppm	0.1	PASS	ND	Analyzed by:	Weight:	Extractio			Extracted	by:	
MIDACLOPRID	0.01	ppm	1	PASS	ND	450, 585, 4044	1.016g		15:11:00		450,585		
KRESOXIM-METHYL	0.01	ppm	1	PASS	ND	Analysis Method : SOP.T.30.							
MALATHION	0.01	ppm	2	PASS	ND	Analytical Batch : DA061740				:06/27/23 1			
METALAXYL	0.01	ppm	3	PASS	ND	Instrument Used :DA-GCMS Analyzed Date :06/26/23 15		Ва	iten Date :	06/25/23 14:	02.22		
METHIOCARB	0.01	ppm	0.1	PASS	ND	Dilution : 250							
METHOMYL	0.01	ppm	0.1	PASS	ND	Reagent : 061423.R23; 0405	21.11; 061223	.R25; 06122	23.R24				
MEVINPHOS	0.01	ppm	0.1	PASS	ND	Consumables : 6697075-02;			\sim				
MYCLOBUTANIL	0.01	ppm	3	PASS	ND	Pipette : DA-080; DA-146; D	A-218						
TCLOBOTANIL						Testing for agricultural agents is performed utilizing Gas Chromatography Triple-Quadrupole Mass S							

Jorge Segredo Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 06/27/23

PASSED

4131 SW 47th AVENUE SUITE 1408 DAVIE, FL, 33314, US (954) 368-7664 Kaycha Labs

Dark Chocolate Bar 10 PC Dark Chocolate Bar Matrix : Edible Type: Chocolate

PASSED

PASSED

Page 3 of 5

Ĩ

82 NE 26th street Miami, FL, 33137, US

Telephone: (305) 900-6266

Email: Taylor.lones@getfluent.com

FLUENT

Residual Solvents

Certificate of Analysis

Sample : DA30624006-005 Harvest/Lot ID: 8410 8825 9346 9950

Batch#: 8410 8825 9346

Sampled : 06/24/23

Ordered : 06/24/23

Solvents	LOD	Units	Action Level	Pass/Fail	Result
L,1-DICHLOROETHENE	0.8	ppm	8	PASS	ND
1,2-DICHLOROETHANE	0.2	ppm	2	PASS	ND
2-PROPANOL	50	ppm	500	PASS	ND
ACETONE	75	ppm	750	PASS	ND
ACETONITRILE	6	ppm	60	PASS	ND
BENZENE	0.1	ppm	1	PASS	ND
BUTANES (N-BUTANE)	500	ppm	5000	PASS	ND
CHLOROFORM	0.2	ppm	2	PASS	ND
DICHLOROMETHANE	12.5	ppm	125	PASS	ND
THANOL	500	ppm	5000	PASS	ND
THYL ACETATE	40	ppm	400	PASS	ND
ETHYL ETHER	50	ppm	500	PASS	ND
ETHYLENE OXIDE	0.5	ppm	5	PASS	ND
IEPTANE	500	ppm	5000	PASS	ND
METHANOL	25	ppm	250	PASS	ND
I-HEXANE	25	ppm	250	PASS	ND
PENTANES (N-PENTANE)	75	ppm	750	PASS	ND
PROPANE	500	ppm	5000	PASS	ND
OLUENE	15	ppm	150	PASS	ND
TOTAL XYLENES	15	ppm	150	PASS	ND
RICHLOROETHYLENE	2.5	ppm	25	PASS	ND
nalyzed by: 50, 585, 4044	Weight: 0.0231g		ion date: 23 13:15:46	7/ 1/ 1/	Extracted by: 850
Analysis Method : SOP.T.40.041.FL Analytical Batch : DA061767SOL nstrument Used : DA-GCMS-002 Analyzed Date : 06/27/23 13:18:22			Reviewed On : 06/27/23 14:11:24 Batch Date : 06/26/23 17:27:34		
Dilution : 1 Reagent : 030420.09 Consumables : 27296; KF140 Pipette : DA-309 25 uL Syringe 35028			HK	ΛX	XXA

Sample Size Received : 560 gram

Sample Method : SOP.T.20.010

Completed : 06/27/23 Expires: 06/27/24

Total Amount : 3920 units

Residual solvents analysis is performed utilizing Gas Chromatography Mass Spectrometry in accordance with with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 06/27/23

Kaycha Labs

Dark Chocolate Bar 10 PC Dark Chocolate Bar Matrix : Edible Type: Chocolate

PASSED

Certificate of Analysis FLUENT

82 NE 26th street Miami, FL, 33137, US Telephone: (305) 900-6266 Email: Taylor.lones@getfluent.com

DAVIE, FL, 33314, US (954) 368-7664

> Sample : DA30624006-005 Harvest/Lot ID: 8410 8825 9346 9950 Batch#: 8410 8825 9346

Sampled : 06/24/23 Ordered : 06/24/23 Sample Size Received : 560 gram Total Amount : 3920 units Completed : 06/27/23 Expires: 06/27/24 Sample Method : SOP.T.20.010

Page 4 of 5

PASSED

Analyte		LOD	Units	Result	Pass / Fail	Action Level	A
ASPERGILLUS	5 TERREUS			Not Present	PASS		A
ASPERGILLUS	5 NIGER			Not Present	PASS		A
ASPERGILLUS	5 FUMIGATUS			Not Present	PASS		0
ASPERGILLUS	5 FLAVUS			Not Present	PASS		A
SALMONELLA	SPECIFIC GENI			Not Present	PASS		A
ECOLI SHIGEI	LLA			Not Present	PASS		Ar
TOTAL YEAST	AND MOLD	10	CFU/g	<10	PASS	100000	58
Analyzed by: 3621, 585, 4044	4 0.86		raction date: 25/23 14:54:		Extracted 3702	by:	Ar
	d:SOP.T.40.0560 h:DA061730MIC		8.FL, SOP.T.		wed On : 00	5/27/23	An Ins An
Thermocycler D		d Isotemp He	at Block	09:27		25/23	Di Re 06 Co Pij
	23.43; 062323.R. 7562003034; 756		\succeq	H	-1		Mad
Analyzed by: 3390, 3621, 58	5, 4044	Weight: 0.8601g	Extractio N/A		Extracted b 3702,3390		
Analytical Batcl Instrument Use	d : SOP.T.40.208 h : DA061731TYM d : Incubator (25-	-27C) DA-097	Revi	9.FL iewed On : 06/2 :h Date : 06/25/			M

Analyzed Date : 06/26/23 12:31:21 Dilution: 10 Reagent : 050223.43; 060723.R45 Consumables : N/A Pipette : N/A

Total yeast and mold testing is performed utilizing MPN and traditional culture based techniques in accordance with F.S. Rule 64ER20-39.

ిస్తో	lycotoxi	ins		I	PAS	SED
Analyte		LOD	Units	Result	Pass / Fail	Action Level
AFLATOXIN B2		0.002	ppm	ND	PASS	0.02
AFLATOXIN B1		0.002	ppm	ND	PASS	0.02
OCHRATOXIN A		0.002	ppm	ND	PASS	0.02
AFLATOXIN G1		0.002	ppm	ND	PASS	0.02
AFLATOXIN G2		0.002	ppm	ND	PASS	0.02
Analyzed by: 585, 3379, 4044	Weight: 1.016g					oy:
SOP.T.30.102.FL (Da	vie), SOP.T.40.102.I		0.101.FL	(Gainesvi	lle),	
Instrument Used : N/	A					
062123.R01 Consumables : 66970	075-02	923.R01; 062223	3.R12; 06	2023.R01;	060523.	R26;
	Analyte AFLATOXIN B2 AFLATOXIN B1 OCHRATOXIN B1 OCHRATOXIN G2 AFLATOXIN G2 Analyzed by: 585, 3379, 4044 Analysis Method : SC SOP.T.30.102.FL (Da Analytical Batch : DA Instrument Used : N// Analyzed Date : 06/2 Dilution : 250 Reagent : 061423.R2 062123.R01 Consumables : 66970	Analyte AFLATOXIN B2 AFLATOXIN B1 OCHRATOXIN B1 OCHRATOXIN G1 AFLATOXIN G1 AFLATOXIN G2 Analyzed by: Weight: 585, 3379, 4044 1.016g Analysis Method : SOP.T.30.101.FL (Gair SOP.T.30.102.FL (Davie), SOP.T.40.102. Analytical Batch : DA061741MYC Instrument Used : N/A Analyzed Date : 06/27/23 18:16:05 Dilution : 250 Reagent : 061423.R23; 040521.11; 0619	Analyte LOD AFLATOXIN B2 0.002 AFLATOXIN B1 0.002 OCHRATOXIN B1 0.002 OCHRATOXIN A 0.002 AFLATOXIN G1 0.002 AFLATOXIN G2 0.002 Analyzed by: Weight: Extraction date 585, 3379, 4044 1.016g 06/26/23 15:11 Analyzis Method : SOP.T.30.101.FL (Gainesville), SOP.T.4 SOP.T.30.102.FL (Davie), SOP.T.40.102.FL (Davie) Analytical Batch : DAA061741MYC Instrument Used : N/A Analyzed Date : 06/27/23 18:16:05 Dilution : 250 Reeagent : 061423.R23; 040521.11; 061923.R01; 06222: 062123.R01 Consumables : 6697075-02	Analyte LOD Units AFLATOXIN B2 0.002 ppm AFLATOXIN B1 0.002 ppm OCHRATOXIN A 0.002 ppm OCHRATOXIN G1 0.002 ppm AFLATOXIN G1 0.002 ppm AFLATOXIN G1 0.002 ppm AFLATOXIN G2 0.002 ppm Analyzed by: Weight: Extraction date: 06/26/23 15:11:00 0.002 ppm Analyzed by: Weight: Extraction date: SOP.T.30.102.FL (Davie), SOP.T.40.102.FL (Davie) SOP.T.40.102.FL (Davie) Analytical Batch : DA061741MYC Reviewed On : 0 Instrument Used : N/A Batch Date : 06/2 Analyzed Date : 06/27/23 18:16:05 Batch Date : 06/2 Dilution : 250 Reagent : 061423.R23; 040521.11; 061923.R01; 062223.R12; 06 062123.R01 Consumables : 6697075-02	Analyte LOD Units Result AFLATOXIN B2 0.002 ppm ND AFLATOXIN B1 0.002 ppm ND OCHRATOXIN A 0.002 ppm ND AFLATOXIN G1 0.002 ppm ND AFLATOXIN G1 0.002 ppm ND AFLATOXIN G2 0.002 ppm ND AFLATOXIN G1 0.002 ppm ND AFLATOXIN G2 0.002 ppm ND Aralyzed by: Weight: Extraction date: E 585, 3379, 4044 1.016g 06/26/23 15:11:00 4 Analyzed by: SOP.T.30.101.FL (Gainesville), SOP.T.40.101.FL (Gainesvi SOP SOP.T.30.102.FL (Davie), SOP.T.40.102.FL (Davie) Reviewed On : 06/27/23 2: Batch Date : 06/25/23 14:00 Analyzed Date : 06/27/23 18:16:05 Batch Date : 06/25/23 14:00 Batch Date : 06/25/23 14:00 Dilution : 250 Reagent : 061423.R23; 040521.11; 061923.R01; 062223.R12; 062023.R01; 062123.R01 Consumables : 6697075-02	O O O O Analyte LOD Units Result Pass / Fail AFLATOXIN B2 0.002 ppm ND PASS AFLATOXIN B1 0.002 ppm ND PASS OCHRATOXIN A 0.002 ppm ND PASS AFLATOXIN G1 0.002 ppm ND PASS AFLATOXIN G2 0.002 ppm ND PASS AFLATOXIN G1 0.002 ppm ND PASS Analyzed by: Weight: Extraction date: Extracted I 50F.7.30.102.FL (Davie), SOP.T.40.102.FL (Gainesville), SOP.T.40.101.FL (Gainesville), SOP.T.40.101.FL (Gainesville), SOP.T.40.101.FL (Gainesville), SOP.T.40.101.FL (Gainesville), SOP.T.40.101.FL (Gainesville), SOP.T.40.102.FL (Davie) Reviewed On: 06/27/23 21:26:48 Analyzed Date: 06/27/23 18:16:05 Batch Date: 06/25/23 14:04:50 Reagent: 06/27/23 18:16:05 Dilution: 250 Reagent: 061423.R23; 040521.11; 061923.R01; 062223.R12; 062023.R01; 060523. 062123.R01 Consumables : 6697075-02 Extracted I Consumables Consumables

Mycotoxins testing utilizing Liquid Chromatography with Triple-Quadrupole Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

Heavy Metals Hg

Metal		LOD	Units	Result	Pass / Fail	Action Level	
TOTAL CONTAMINANT	LOAD METAL	S 0.08	ppm	<0.4	PASS	5	
ARSENIC		0.02	ppm	ND	PASS	1.5	
CADMIUM		0.02	ppm	0.148	PASS	0.5	
MERCURY		0.02	ppm	ND	PASS	3	
LEAD		0.02	ppm	ND	PASS	0.5	
Analyzed by: 1022, 585, 4044	Weight: 0.2385g	Extraction da 06/26/23 08		Extracted by: 3619			
Analysis Method : SOP.T. Analytical Batch : DA061			ed On : 06	/27/23 10:	52.22		
Instrument Used : DA-ICI Analyzed Date : 06/26/23	PMS-003			4/23 12:08			

Dilution: 50

Reagent: 001523.R17; 042623.R82; 062323.R15; 062623.R01; 062323.R13; 061923.R19; 050923.01; 061423.R46

Consumables : 179436; 15021042; 210508058 Pipette : DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 06/27/23

Microbial

ka ka	ycha
	LABS

4131 SW 47th AVENUE SUITE 1408

Kaycha Labs

Dark Chocolate Bar 10 PC Dark Chocolate Bar Matrix : Edible Type: Chocolate

Page 5 of 5

PASSED

PASSED

(954) 368-7664 **Certificate of Analysis**

FLUENT

Pipette : N/A

82 NE 26th street Miami, FL, 33137, US Telephone: (305) 900-6266 Email: Taylor.Jones@getfluent.com

DAVIE, FL, 33314, US

Sample : DA30624006-005 Harvest/Lot ID: 8410 8825 9346 9950 Batch#: 8410 8825 9346

Sampled : 06/24/23 Ordered : 06/24/23

Sample Size Received : 560 gram Total Amount : 3920 units Completed : 06/27/23 Expires: 06/27/24 Sample Method : SOP.T.20.010

Homogeneity

Amount of tests conducted : 26

	Filth/Foreign Material		PA	SSED
alvte	LOD Units	Result	P/F	Action Leve

Analyte Filth and Fore	ign Mat	erial	LOD Units 0.1 %	Result ND	P/F PASS	Action Level	An
Analyzed by: 1879, 4044	7	Weight: NA	Extraction N/A	date:	Extra N/A	cted by:	то
Analysis Metho							(RS
Analytical Batch Instrument Use Analyzed Date :	d:Filth/F	oreign Mater	ial Microscope			/23 20:15:02 3 19:07:43	An
Dilution : N/A	00/25/25	19.22.33					390
Reagent : N/A Consumables : I Pipette : N/A	N/A						Ana Ana Inst
Filth and foreign technologies in a			rformed by visual in 64ER20-39.	spection utiliz	ing naked ey	e and microscope	Ana
(\bigcirc)	Wa	ater A	ctivity		PA	SSED	Rea Con Pipe

		7	4		-	$ \rightarrow $	
Analyte Water Activity		LOD 0.01	Units aw	Result 0.51	P/F PASS	Action Level	
Analyzed by: 4056, 585, 4044	Weight: 7.42g		traction 6/25/23 1				
Analysis Method : SOF Analytical Batch : DAO Instrument Used : DA- Analyzed Date : N/A	61733WAT	lygropa	lm	Reviewed 0 Batch Date		23 15:13:09 11:03:30	
Dilution : N/A Reagent : 050923.03 Consumables : PS-14							

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

Analyte		LOD	Units	Pass/Fail	Result	Action Level
TOTAL THC - HOMOG (RSD)	ENEITY	0.001	%	PASS	1.075	25
Analyzed by	Average Weight		Extractio	n date :	E	ctracted By
3963, 585, 4044	3.954g		06/25/23	10:10:04	39	963
Analysis Method : SOP. Analytical Batch : DA06 Instrument Used : DA-L Analyzed Date : 06/25/2	1729HOM C-001 (Homo)	OP.T.40	Revie	wed On : 06/20 Date : 06/25/2		
Dilution: 40 Reagent: 061523.01; 0 Consumables: 947.109 Pipette: DA-079; DA-10	; 250346; CE0				; R1KB142	70

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 06/27/23