

Certificate of Analysis

COMPLIANCE FOR RETAIL

Kaycha Labs

FTH-Frost Donkey WF 3.5g FTH-Frost Donkey Matrix: Flower

Sample: DA30209007-001 Harvest/Lot ID: HYB-FD-020223-C0076

Batch#: 4445 1301 7698 9847

Cultivation Facility: Zolfo Springs Cultivation Processing Facility: Zolfo Springs

Processing

Distributor Facility:

Source Facility: Zolfo Springs Cultivation

Seed to Sale# 8767 7670 4696 3127

Batch Date: 01/17/23

Sample Size Received: 31.5 gram

Total Amount: 1257 units Retail Product Size: 3.5 gram

Ordered: 02/08/23 Sampled: 02/08/23

Completed: 02/11/23 Sampling Method: SOP.T.20.010

PASSED

Feb 11, 2023 | FLUENT

82 NE 26th street Miami, FL, 33137, US

FLUENT

SAFETY RESULTS

Pesticides PASSED

Heavy Metals PASSED

Microbials PASSED

Mycotoxins PASSED

Residuals Solvents

PASSED

Pages 1 of 5

Water Activity PASSED

Moisture PASSED

TESTED

PASSED

FLUENT

Cannabinoid

Total THC

20.886% Total THC/Container : 731.01 mg

Total CBD 0.064%

Total CBD/Container: 2.24 mg

Total Cannabinoids 24.516%

Total Cannabinoids/Container: 858.06

TOTAL THC

23,965

0.001

%
mg/unit
LOD

% **Weight:** 0.1994g

ND

ND

0.001

Extraction date: 02/09/23 10:54:59

%

CBGA

0.364

12.74

0.001

0.177

6.195

0.001

CBC

0.069

2.415

0.001

% Extracted by: 3335,1665

TOTAL CBD

0.073

2.555

0.001

(DRY) 28.13 838.775 984.55 0.001

0.329

0.001

11.515

Analysis Method : SOP.T.40.031, SOP.T.30.031 Analytical Batch : DA055883POT Instrument Used : DA-LC-002 Running on: 02/09/23 11:32:51

Reviewed On: 02/10/23 13:05:55 Batch Date: 02/09/23 09:34:17

CBN

0.018

0.63

0.001

THCV

ND

ND

0.001

CBDV

ND

ND

0.001

Dilution: 400 Reagent: 020723.R05; 070121.27; 020723.R06

Consumables: 239146; 280670723; CE0123; 61633-125C6-125E; R1KB14270

23.441

0.001

820.435

Pipette : DA-079; DA-108; DA-078

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

CBDA

0.074

2.59

0.001

D8-THC

0.044

1.54

0.001

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo

Lab Director

ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

02/11/23

Kaycha Labs

FTH-Frost Donkey WF 3.5g FTH-Frost Donkey Matrix : Flower

PASSED

Certificate of Analysis

82 NE 26th street Miami, FL, 33137, US **Telephone:** (305) 900-6266

Sample : DA30209007-001 Harvest/Lot ID: HYB-FD-020223-C0076

Batch#: 4445 1301 7698

Sampled: 02/08/23 Ordered: 02/08/23

Sample Size Received: 31.5 gram Total Amount: 1257 units Completed: 02/11/23 Expires: 02/11/24 Sample Method: SOP.T.20.010

Page 2 of 5

Terpenes

TESTED

%) 007 5 007 2 007 4 007 0 007 4 007 4 007 8 007 4 007 8 007 N 007 8	.48 .77 :0.7 .165 .325 ID	1.701 0.066 0.128 0.022 <0.02 0.119 0.095 ND	Result (%)		Terpenes ALPHA-HUMULENE VALENCENE CIS-NEROLIDOL TRANS-NEROLIDOL CARYOPHYLLENE OXIDE GUAIOL CEDROL		LOD (%) 0.007 0.007 0.007 0.007 0.007	mg/unit 5.04 ND ND <0.7 <0.7 ND	0.144 ND ND <0.02 <0.02	Result (%)		ı
007 5 007 2 007 4 007 0 007 4 007 3 007 8 007 N 007 8 007 8	.31 .48 .77 :0.7 .165 .325 ID	0.066 0.128 0.022 <0.02 0.119 0.095 ND			VALENCENE CIS-NEROLIDOL TRANS-NEROLIDOL CARYOPHYLLENE OXIDE GUAIOL CEDROL		0.007 0.007 0.007 0.007 0.007	ND ND <0.7 <0.7	ND ND <0.02 <0.02			
007 4 007 0 007 < 007 4 007 3 007 N 007 N 007 < 007 2	.48 .77 :0.7 .165 .325 ID	0.128 0.022 <0.02 0.119 0.095 ND			CIS-NEROLIDOL TRANS-NEROLIDOL CARYOPHYLLENE OXIDE GUAIOL CEDROL		0.007 0.007 0.007	ND <0.7 <0.7	ND <0.02 <0.02			
007 0 007 < 007 4 007 3 007 N 007 N 007 < 007 <	.77 :0.7 .165 .325 ID ID	0.022 <0.02 0.119 0.095 ND ND			TRANS-NEROLIDOL CARYOPHYLLENE OXIDE GUAIOL CEDROL		0.007 0.007	<0.7 <0.7	<0.02 <0.02			
007 < 007 4 007 3 007 N 007 N 007 S 007 <	:0.7 .165 .325 ID ID::0.7	<0.02 0.119 0.095 ND ND			CARYOPHYLLENE OXIDE GUAIOL CEDROL		0.007	< 0.7	< 0.02			
007 4 007 3 007 N 007 N 007 <	.165 .325 ID ID :0.7	0.119 0.095 ND ND			GUAIOL CEDROL							
007 3 007 N 007 N 007 <	.325 ID ID :0.7	0.095 ND ND			CEDROL		0.007	ND	ND			
007 N 007 N 007 <	ID ID :0.7	ND ND							ND			
007 N 007 < 007 2	ID :0.7	ND					0.007	ND	ND			
007 <	0.7				ALPHA-BISABOLOL		0.007	1.26	0.036			
007 2					Analyzed by:	Weight:		Extraction d	ate:		Extracted by:	
		< 0.02			2076, 585, 1440	0.8482g		02/09/23 12	:03:57		2076	
007 N	0.755	0.593			Analysis Method: SOP.T.30.061A.FL	, SOP.T.40.061A.FL						
	ID	ND			Analytical Batch : DA055892TER Instrument Used : DA-GCMS-005					2/11/23 14:53:42 09/23 10:14:47		
007 2	.17	0.062			Running on: 02/10/23 09:02:40			Batch	Date: 02/	09/23 10:14:47		
007 <	0.7	< 0.02			Dilution: 10							
007 <	0.7	< 0.02			Reagent: 120722.10							
007 <	0.7	< 0.02				95; CE0123; R1KB1	4270					
007 <	0.7	< 0.02										
007 0	.98	0.028			Terpenoid testing is performed utilizing (Gas Chromatography M	lass Spectr	ometry.				
007 3	.465	0.099										
007 <	0.7	< 0.02										
007 N	ID	ND										
007 N	ID	ND										
013 <	1.4	< 0.04										
007 N	ID	ND										
007 N	ID	ND										
007 N	ID	ND										
007 <	:0.7	< 0.02										
007 N	ID	ND										
007 <	:0.7	< 0.02										
007 1	0.115	0.289										
0	.7	0.02										
0 0 0 0 0 0 0 0 0	0007	007 <0.7 007 <0.7 007 0.98 007 <0.98 007 <0.7 007 ND 007 ND	2007 <0.7	1007 <0.7 <0.02 1007 <0.7 <0.02 1007 <0.98 1007 0.98 1007 3.465 0.099 1007 ×0.7 <0.02 1007 ×0.0 ND 100 ND 1007 ND 1013 <1.4 <0.04 1007 ND 100 ND 1007 ×0.7 <0.02 1007 <0.7 <0.02 1007 <0.7 <0.02 1007 ×0.02 1007 ×0.02	1007	Consumables : 210414634; MKCN95 Pipette : I/X	Consumables : 21.041.4634; MKCN9995; CE0123; R1.KB1 Pipetas : IV.0 Value	Consumables : 21.04.16.34; MKCN9995; CE0123; R1KB14270 Pipette : NA Pipette	Consumables : 210414634; MKCN9995; CE0123; R1KB14270	Consumables : 210414634; MKCN9995; CE0123; R1K814270	Consumables : 210414634; MKCN9995; CE0123; R1KB14270 Pipette : IVA Pipet	Consumables : 210414634; MtCN9995; CE0123; R1KB14270

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo

Lab Director

ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

02/11/23

Kaycha Labs

FTH-Frost Donkey WF 3.5g FTH-Frost Donkey Matrix : Flower

PASSED

FLUENT

82 NE 26th street Miami, FL, 33137, US **Telephone:** (305) 900-6266

Sample : DA30209007-001 Harvest/Lot ID: HYB-FD-020223-C0076

Batch#: 4445 1301 7698

Sampled: 02/08/23 Ordered: 02/08/23

Certificate of Analysis

Sample Size Received: 31.5 gram Total Amount: 1257 units Completed: 02/11/23 Expires: 02/11/24 Sample Method: SOP.T.20.010

Page 3 of 5

Pesticides

PASSED

Pesticide	LOD	Units	Action Level	Pass/Fail	Result	Pesticide		LOD	Units	Action Level	Pass/Fail	Result
OTAL CONTAMINANT LOAD (PESTICIDES)	0.01	ppm	5	PASS	ND	OXAMYL		0.01	ppm	0.5	PASS	ND
OTAL DIMETHOMORPH	0.01	ppm	0.2	PASS	ND	PACLOBUTRAZOL	PACLOBUTRAZOL		ppm	0.1	PASS	ND
OTAL PERMETHRIN	0.01	ppm	0.1	PASS	ND	PHOSMET		0.01	ppm	0.1	PASS	ND
OTAL PYRETHRINS	0.01	ppm	0.5	PASS	ND	PIPERONYL BUTOXIDE		0.01	mag	3	PASS	ND
OTAL SPINETORAM	0.01	ppm	0.2	PASS	ND		PRALLETHRIN		ppm	0.1	PASS	ND
OTAL SPINOSAD	0.01	ppm	0.1	PASS	ND	PROPICONAZOLE		0.01	ppm	0.1	PASS	ND
BAMECTIN B1A	0.01	ppm	0.1	PASS	ND					0.1	PASS	ND
CEPHATE	0.01	ppm	0.1	PASS	ND	PROPOXUR		0.01	ppm			
CEQUINOCYL	0.01	ppm	0.1	PASS	ND	PYRIDABEN		0.01	ppm	0.2	PASS	ND
CETAMIPRID	0.01	ppm	0.1	PASS	ND	SPIROMESIFEN		0.01	ppm	0.1	PASS	ND
LDICARB	0.01	ppm	0.1	PASS	ND	SPIROTETRAMAT		0.01	ppm	0.1	PASS	ND
ZOXYSTROBIN	0.01	ppm	0.1	PASS	ND	SPIROXAMINE		0.01	ppm	0.1	PASS	ND
FENAZATE	0.01	ppm	0.1	PASS	ND	TEBUCONAZOLE		0.01	ppm	0.1	PASS	ND
FENTHRIN	0.01	ppm	0.1	PASS	ND	THIACLOPRID		0.01	ppm	0.1	PASS	ND
OSCALID	0.01	ppm	0.1	PASS	ND	THIAMETHOXAM		0.01	ppm	0.5	PASS	ND
ARBARYL	0.01	ppm	0.5	PASS	ND	TRIFLOXYSTROBIN		0.01	ppm	0.1	PASS	ND
ARBOFURAN	0.01	ppm	0.1	PASS	ND			0.01	PPM	0.15	PASS	ND
HLORANTRANILIPROLE	0.01	ppm	1	PASS	ND	PENTACHLORONITROBENZENE (PCNB) *						
HLORMEQUAT CHLORIDE	0.01	ppm	1	PASS	ND	PARATHION-METHYL *		0.01	PPM	0.1	PASS	ND
HLORPYRIFOS	0.01	ppm	0.1	PASS	ND	CAPTAN *		0.07	PPM	0.7	PASS	ND
OFENTEZINE	0.01	ppm	0.2	PASS	ND	CHLORDANE *		0.01	PPM	0.1	PASS	ND
DUMAPHOS	0.01	ppm	0.1	PASS	ND	CHLORFENAPYR *		0.01	PPM	0.1	PASS	ND
AMINOZIDE	0.01	ppm	0.1	PASS	ND	CYFLUTHRIN *		0.05	PPM	0.5	PASS	ND
AZINON	0.01	ppm	0.1	PASS	ND	CYPERMETHRIN *		0.05	PPM	0.5	PASS	ND
CHLORVOS	0.01	ppm	0.1	PASS	ND	Analyzed by:	Weight:	Evtracti	on date:		Extracted	l by
METHOATE	0.01	ppm	0.1	PASS	ND	585, 53, 1440	0.9859g		3 12:22:42		585	by.
HOPROPHOS	0.01	ppm	0.1	PASS	ND	Analysis Method : SOP.				(Davie), SOP		Gainesvil
OFENPROX	0.01	ppm	0.1	PASS	ND	SOP.T.40.102.FL (Davie)		/ //		(,		
TOXAZOLE	0.01	ppm	0.1	PASS	ND	Analytical Batch: DA05				On:02/10/2		
NHEXAMID	0.01	ppm	0.1	PASS	ND	Instrument Used : DA-L			Batch Da	te:02/09/23	09:54:55	
NOXYCARB	0.01	ppm	0.1	PASS	ND	Running on : 02/09/23 1	.3:48:25					
ENPYROXIMATE	0.01	ppm	0.1	PASS	ND	Dilution : 250	020722 000: 02002	2 001. 012	422 021. 0	20022 001. 0	40521 11	
PRONIL	0.01	ppm	0.1	PASS	ND	Reagent: 020623.R01; Consumables: 669707		3.RU1; U12	423.R21; U	20823.R01; 0	40521.11	
ONICAMID	0.01	ppm	0.1	PASS	ND	Pipette : DA-093; DA-09						
UDIOXONIL	0.01	ppm	0.1	PASS	ND	Testing for agricultural ac		lizina Liauia	Chromatoo	raphy Triple-	Ouadrupole Ma	SS
EXYTHIAZOX	0.01	ppm	0.1	PASS	ND	Spectrometry in accordar				,,,,,,	z = ar apore mu	
IAZALIL	0.01	ppm	0.1	PASS	ND	Analyzed by:	Weight:	Extr	action dat	e:	Extracte	ed by:
IIDACLOPRID	0.01	ppm	0.4	PASS	ND	450, 53, 1440, 585	0.9859g	02/0	9/23 12:22	:42	585	
RESOXIM-METHYL	0.01	ppm	0.1	PASS	ND	Analysis Method: SOP.						
ALATHION	0.01	ppm	0.2	PASS	ND	Analytical Batch : DA05				n:02/10/23 1		
TALAXYL	0.01	ppm	0.1	PASS	ND	Instrument Used : DA-G Running on : 02/09/23 1		В	atch Date	02/09/23 09:	58:37	
ETHIOCARB	0.01	ppm	0.1	PASS	ND	Dilution: 250	.J.11:44					
ETHOMYL	0.01	ppm	0.1	PASS	ND	Reagent: 020923.R01;	040521 11: 020223	R55: 0202	23 R56			
EVINPHOS	0.01	ppm	0.1	PASS	ND	Consumables: 669707		.11.55, 0202	23.1130			
YCLOBUTANIL	0.01	ppm	0.1	PASS	ND	Pipette : DA-080; DA-14						
ALED	0.01	ppm	0.25	PASS	ND	Testing for agricultural agin accordance with F.S. R		lizing Gas C	hromatogra	phy Triple-Qu	adrupole Mass	Spectror

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo

Lab Director

ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

02/11/23

Kaycha Labs

FTH-Frost Donkey WF 3.5g FTH-Frost Donkey Matrix: Flower

DAVIE, FL, 33314, US

Certificate of Analysis

PASSED

FLUENT

82 NE 26th street Miami, FL, 33137, US Telephone: (305) 900-6266 Sample: DA30209007-001 Harvest/Lot ID: HYB-FD-020223-C0076

Batch#: 4445 1301 7698

Batch Date: 02/09/23 08:07:20

Sampled: 02/08/23 Ordered: 02/08/23

Sample Size Received: 31.5 gram Total Amount: 1257 units Completed: 02/11/23 Expires: 02/11/24 Sample Method: SOP.T.20.010

Page 4 of 5

Microbial

Mycotoxins

PASSED

Reviewed On: 02/10/23 13:20:37

Batch Date: 02/09/23 09:58:34

Analyte	LOD	Units	Result	Pass / Fail	Action Level
ESCHERICHIA COLI SHIGELL	A		Not Present	PASS	
SALMONELLA SPECIFIC GEN	E		Not Present	PASS	
ASPERGILLUS FLAVUS			Not Present	PASS	
ASPERGILLUS FUMIGATUS			Not Present	PASS	
ASPERGILLUS TERREUS			Not Present	PASS	
ASPERGILLUS NIGER			Not Present	PASS	
TOTAL YEAST AND MOLD	10	CFU/g	40	PASS	100000
Analyzed by: Weig		action date		Extracted	by:
3336, 585, 1440 0.99	77g 02/0	09/23 10:52	:13	3336	

Analysis Method : SOP.T.40.056C, SOP.T.40.058.FL, SOP.T.40.209.FL
Analytical Batch : DA055876MIC Reviewed On : 02/11/23 11:05:31

Instrument Used: DA-265 Gene-UP RTPCR

Running on : $02/09/23 \ 11:07:24$

Dilution : N/A

Reagent: 012423.R27; 020123.R110

Consumables: 500124	
Pipette: N/A	

Analyzed by: 3336, 3621, 585, 1440	Weight: 1.1235g	02/09/23 11:04:39	3336,3390
Analysis Method : SOP.T.40.208			
Analytical Batch : DA055905TYM)2/11/23 11:54:31
Instrument Used: Incubator (25- Running on: 02/09/23 17:06:30		Batch Date: 02	/09/23 11:02:35

Dilution: 10

Reagent: 110822.16; 013123.R21

Consumables : N/A

Total yeast and mold testing is performed utilizing MPN and traditional culture based techniques in accordance with F.S. Rule 64ER20-39.

0						
Analyte	38	LOD	Units	Result	Pass / Fail	Action Level
AFLATOXIN B2		0.002	ppm	ND	PASS	0.02
AFLATOXIN B1		0.002	ppm	ND	PASS	0.02
OCHRATOXIN A		0.002	ppm	ND	PASS	0.02
AFLATOXIN G1		0.002	ppm	ND	PASS	0.02
AFLATOXIN G2		0.002	ppm	ND	PASS	0.02
Analyzed by: 585, 53, 1440	Weight:	Extraction date			Extracted	by:
363, 33, 1440	0.9859g	02/09/23 12:23	2:42		585	

Analysis Method: SOP.T.30.101.FL (Gainesville), SOP.T.40.101.FL (Gainesville),

SOP.T.30.102.FL (Davie), SOP.T.40.102.FL (Davie)

Analytical Batch: DA055890MYC

Instrument Used: DA-LCMS-003 (MYC) Running on: 02/09/23 13:48:15

Dilution: 250

Reagent: 020623.R01; 020723.R08; 020923.R01; 012423.R21; 020823.R01; 040521.11
Consumables: 6697075-02

Pipette: DA-093; DA-094; DA-219

 $\label{thm:mass} \mbox{Mycotoxins testing utilizing Liquid Chromatography with Triple-Quadrupole Mass Spectrometry in accordance with F.S. Rule 64ER20-39.$

Heavy Metals

PASSED

Metal		LOD	Units	Result	Pass / Fail	Action Level	
TOTAL CONTAMINANT LOA	D METALS	0.11	ppm	ND	PASS	1.1	
ARSENIC		0.02	ppm	ND	PASS	0.2	
CADMIUM		0.02	ppm	ND	PASS	0.2	
MERCURY		0.02	ppm	ND	PASS	0.2	
LEAD		0.05	ppm	ND	PASS	0.5	
Analyzed by: 1022, 53, 1440, 585	Weight: 0.4162g	Extraction 02/09/23		Y	Extracte 3619	d by:	

Analysis Method: SOP.T.30.082.FL, SOP.T.40.082.FL

Analytical Batch : DA055882HEA Reviewed On: 02/10/23 11:29:52 Instrument Used: DA-ICPMS-003 Batch Date: 02/09/23 09:27:57 Running on: 02/09/23 14:45:13

Dilution: 50

Reagent: 012523.R01; 121922.R11; 123022.R14; 020323.R24; 020723.R33; 020323.R22; 020323.R23; 012323.R43; 020723.R34; 100622.35

Consumables: 179436; 210508058; 210803-059

Pipette: DA-061; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors. Jorge Segredo

Lab Director

ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

02/11/23

Kaycha Labs

FTH-Frost Donkey WF 3.5g FTH-Frost Donkey Matrix : Flower

Certificate of Analysis

PASSED

82 NE 26th street Miami, FL, 33137, US **Telephone:** (305) 900-6266

Sample: DA30209007-001 Harvest/Lot ID: HYB-FD-020223-C0076

Batch#: 4445 1301 7698

Sampled: 02/08/23 Ordered: 02/08/23

Sample Size Received: 31.5 gram Total Amount: 1257 units Completed: 02/11/23 Expires: 02/11/24 Sample Method: SOP.T.20.010

Page 5 of 5

Filth/Foreign **Material**

Pipette: DA-066

Moisture

PASSED

Analyte Filth and Foreign	Material	LOD 0.5	Units %	Result ND	P/F PASS	Action Level	Analyte Moisture Content		LOD 1	Units %	Result 12.85	P/F PASS	Action Level
Analyzed by: 585, 1440	Weight: NA		ctraction o	late:	Extra N/A	cted by:	Analyzed by: 2926, 585, 1440	Weight: 0.504g		xtraction 6 2/10/23 06			tracted by:
Analysis Method : SO Analytical Batch : DA Instrument Used : Fi Running on : N/A	055989FIL	rial Micro	oscope			/23 11:35:38 3 11:31:29	Analysis Method : SOP. Analytical Batch : DA05 Instrument Used : DA-0 Running on : 02/10/23 (5900MOI 03 Moisture	Analyze		Reviewed Or Batch Date :		
Dilution: N/A Reagent: N/A Consumables: N/A							Dilution: N/A Reagent: 101920.06; 1 Consumables: N/A	.00622.35					

Pipette: N/A Filth and foreign material inspection is performed by visual inspection utilizing naked eye and microscope technologies in accordance with F.S. Rule 64ER20-39.

Water Activity

	LOD 0.1	Units aw	Result 0.571	P/F PASS	Action Level 0.65	
Weight: 0.591g						
			Reviewed O	on: 02/10/2	3 13:06:49	
		0.1 Weight: E: 0.591g 0: T.40.019	0.1 aw Weight: Extraction d 0.591g 02/09/23 11 .T.40.019	0.1 aw 0.571 Weight: Extraction date: 02/09/23 11:50:48 T.40.019	0.1 aw 0.571 PASS Weight: Extraction date: Extraction da	

Running on: 02/09/23 11:49:05 Reagent: 100522.07 Consumables: PS-14 Pipette: N/A

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

Jorge Segredo Lab Director

ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

02/11/23