

Kaycha Labs :

Super Glue x Grape Diamond Lilac Diesel Cartridge Concentrate 0.5g Super Glue x Grape Diamond Lilac Diesel

Matrix: Derivative

Certificate of Analysis

COMPLIANCE FOR RETAIL

Sample: DA30104004-006 Harvest/Lot ID: 9938 4935 3989 4217

Batch#: 9938 4935 3989 4217

Cultivation Facility: Tampa Cultivation Processing Facility: Tampa Processing Seed to Sale# 3106 0026 6951 7388

Batch Date: 11/16/22

Sample Size Received: 15.5 gram

Total Amount: 2849 units Retail Product Size: .5 gram

Ordered: 01/03/23 Sampled: 01/03/23

Completed: 01/06/23

Sampling Method: SOP.T.20.010

PASSED

Pages 1 of 6

Jan 06, 2023 | FLUENT

82 NE 26th street Miami, FL, 33137, US

PRODUCT IMAGE

SAFETY RESULTS

PASSED

Heavy Metals **PASSED**

Microbials PASSED

PASSED

PASSED

PASSED

Water Activity PASSED

Moisture

MISC.

TESTED

PASSED

mg/unit

LOD

Cannabinoid

Total THC

90.369%

0.03

0.001

CBDA

0.022

0.11

0.001

%

%

Total CBD 0.31%

Total CBD/Container: 1.55 mg

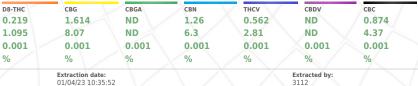
Reviewed On: 01/05/23 08:42:22 Batch Date: 01/04/23 09:25:21

Total Cannabinoids

70			70
Analyzed by: 3112, 3605, 1665, 1440			
	40.021	CODT	20.0

Analysis Method: SUP.1.40.031, Analytical Batch: DA054253POT Instrument Used: DA-LC-007 Running on: 01/04/23 10:37:51

451.82


0.001

Dilution: 400 Reagent: 071222.01; 122722.R14; 122722.R12 $\textbf{Consumables: } 239146; \ CE0123; \ 210803-059; \ 61633-125C6-125E; \ R1KB14270$

Pipette: DA-079; DA-108; DA-078

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

Total Cannabinoids/Container: 476.06

CBD

0.291

1,455

0.001

%

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo Lab Director

ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

01/06/23

Super Glue x Grape Diamond Lilac Diesel Cartridge Concentrate 0.5g Super Glue x Grape Diamond Lilac Diesel

Matrix : Derivative

Certificate of Analysis

PASSED

FLUENT

82 NE 26th street Miami, FL, 33137, US **Telephone:** (305) 900-6266 Email: Taylor.Jones@getfluent.com

DAVIE, FL, 33314, US

Sample : DA30104004-006

Harvest/Lot ID: 9938 4935 3989 4217

Batch#: 9938 4935 3989

Sampled: 01/03/23 Ordered: 01/03/23 Sample Size Received: 15.5 gram

Total Amount: 2849 units Completed: 01/06/23 Expires: 01/06/24

Sample Method : SOP.T.20.010

Page 2 of 6

Terpenes

TESTED

11.68 <0.1 0.53 ND ND 0.205 3.815 0.245 ND ND 0.715 ND 2.485 ND ND	2.336 <0.02 0.106 ND ND 0.041 0.763 ND ND 0.049 ND ND 0.143 ND 0.497 ND ND 0.497 ND ND		-	ALPHA-HUMULENE VALENCENE CIS-NEROLIDOL TRANS-NEROLIDOL CARYOPHYLLENE OXIDE GUAIOL ACHEROLIDOL ANALYSE OXIDE ANALYSE OXIDE ANALYSE OXIDE ANALYSE OXIDE SON TO THE OXIDE DILITOR OXIDE NEW O				13:49 wed On : 0	1/06/23 12:07:06 04/23 09:52:32	Extracted by: 2076
0.53 ND ND 0.205 3.815 0.245 ND ND 0.715 ND 2.485 ND ND	0.106 ND ND 0.041 0.763 0.049 ND ND 0.143 ND 0.497 ND		-	CIS-NEROLIDOL TRANS-NEROLIDOL CARYOPHYLLENE OXIDE GUAIOL CEDROL ALPHA-BISABOLOL Analyzed by: 2076, 33, 1440 Analysis Method: SOP.T.30.061A. Analytical Batch: DA054259TER Instrument Uses: DA-GCMSOR Running on: 01/05/23 09:37:53 Dilution: 10 Reagent: 120722.08 Reagent: 120722.08	1.1157g FL, SOP.T.40.061A.FL	0.007 0.007 0.007 0.007 0.007 0.007	ND ND ND ND ND 0.175 Extraction da 01/04/23 12:4	ND ND ND ND 0.035 te: 43:49		
ND ND 0.205 3.815 0.245 ND ND 0.715 ND 2.485 ND ND ND	ND ND 0.041 0.763 0.049 ND ND 0.143 ND 0.497 ND ND		=	TRANS-NEROLIDOL CARYOPHYLLENE OXIDE GUAIOL CEDROL ALPHA-BISABOLOL Analyzed by: 2076, 53, 1440 Analyzideal Batch: DA054259TER Instrument Uses: DA-GCMSOS Running on: 01/05/23 09:37:53 Dilution: 10 Reagent: 120722.08 Reagent: 120722.08	1.1157g FL, SOP.T.40.061A.FL	0.007 0.007 0.007 0.007 0.007	ND ND ND 0.175 Extraction da 01/04/23 12:4	ND ND ND ND 0.035 te: 13:49		
ND 0.205 3.815 0.245 ND ND 0.715 ND 2.485 ND ND 1.3	ND 0.041 0.763 0.049 ND 0.143 ND 0.497 ND 0.497		=	CARYOPHYLLENE OXIDE GUAIOL CEBROL ALPHA-BISABOLOL Analyzed by: 2076, 53, 1440 Analysis Method: SOP.T.30.061A. Analytical Batch: DA054225FER instrument Usee: DA-GCMS-005 Running on: 0.1/03/23.09:37.53 Dilution: 10 Reagent: 120722.08 Consumables: 210414634; MKCN Consumables: 210444634; MKCN	1.1157g FL, SOP.T.40.061A.FL	0.007 0.007 0.007 0.007	ND ND 0.175 Extraction da 01/04/23 12:4	ND ND ND 0.035 te: \$3:49		
0.205 3.815 0.245 ND ND 0.715 ND 2.485 ND ND 1.3	0.041 0.763 0.049 ND ND 0.143 ND 0.497 ND ND		=	GUAIOL CEDROL ALPHA-BISABOLOL Analyzed by: 2076, 53, 2440 Analyzis Method: SOP.T.30.061A: Analytical Batch: DA054259TER Instrument Uses: DA:GCMS:005 Running on: 01/05/23.09:37:53 Dilution: 120 Reagent: 120722.08 Respent: 120722.08	1.1157g FL, SOP.T.40.061A.FL	0.007 0.007 0.007	ND ND 0.175 Extraction da 01/04/23 12:4	ND ND 0.035 te: 43:49		
3.815 0.245 ND ND 0.715 ND 2.485 ND ND 1.3	0.763 0.049 ND ND 0.143 ND 0.497 ND ND 0.26		-	CEDROL ALPHA-BISABOLOL Analyzed by: 2076, 53, 1440 Analyzis Method: SOPT.30.061A. Analyzis Method: SOPT.30.061A. Analyzis Method: SOPT.30.061A. Running on: 01/05/23.09:37:53 Dilution: 10 Reagent: 120722.08 Consumables: 210414634; MKCN	1.1157g FL, SOP.T.40.061A.FL	0.007 0.007	ND 0.175 Extraction da 01/04/23 12:4	ND 0.035 te: 43:49		
0.245 ND ND 0.715 ND 2.485 ND ND 1.3	0.049 ND ND 0.143 ND 0.497 ND ND 0.26		-	ALPHA-BISABOLOL Analyzed by: 2076, 53, 1440 Analysis Method: SOP.T.30.061A. Analytical Batch: DA054239TER Instrument Uses: DA-GCMSOR Running on: 0.1003/23.09:37.53 Dilution: 10 Reagent: 1207.22.08 Rossumbles: 210414634; MKCN Consumables: 210444634; MKCN	1.1157g FL, SOP.T.40.061A.FL	0.007	0.175 Extraction da/ 01/04/23 12:4	0.035 te: 13:49 wed On: 0		
ND ND 0.715 ND 2.485 ND ND 1.3	ND ND 0.143 ND 0.497 ND ND 0.26		-	Analyzed by: 2076, 53, 1440 Analysis Method: SOP.T.30.061A. Analytical Batch: DA054259TER Instrument Used: DA-GCMS-005 Running on: 0.105/23.09:37:53 Dilution: 10 Reagent: 120722.08 Consumables: 210414634; MKCN	1.1157g FL, SOP.T.40.061A.FL		Extraction day 01/04/23 12:4	te: 13:49 wed On : 0		
ND 0.715 ND 2.485 ND ND 1.3	ND 0.143 ND 0.497 ND ND 0.26		-	2076, 53, 1440 Analytical Batch: DA: OSP.T.30.061A.1 Analytical Batch: DA: OSP.T.30.061A.1 Instrument Used: DA: OSM.5-035 Running on: 01/05/23 09:37:53 Dilution: 10 Reagent: 120722.08 Consumables: 210414634; MKCN	1.1157g FL, SOP.T.40.061A.FL		01/04/23 12:4 Revie	13:49 wed On : 0		
0.715 ND 2.485 ND ND 1.3 ND	0.143 ND 0.497 ND ND 0.26		-	2076, 53, 1440 Analytical Batch: DA: OSP.T.30.061A.1 Analytical Batch: DA: OSP.T.30.061A.1 Instrument Used: DA: OSM.5-035 Running on: 01/05/23 09:37:53 Dilution: 10 Reagent: 120722.08 Consumables: 210414634; MKCN	1.1157g FL, SOP.T.40.061A.FL		01/04/23 12:4 Revie	13:49 wed On : 0		
ND 2.485 ND ND 1.3 ND	ND 0.497 ND ND 0.26			Analytical Batch: DA054259TER Instrument Used: DA-GCMS-005 Running on: 0105/23 09:37:53 Dilution: 10 Reagent: 120722.08 Consumables: 210414634; MKCN						
2.485 ND ND 1.3 ND	0.497 ND ND 0.26			Instrument Used: DA-GCMS-005 Running on: 01/05/23 09:37:53 Dilution: 10 Reagent: 120722.08 Consumables: 210414634; MKCN	10005- CEN123- DIVR	214270				
ND ND 1.3 ND	ND ND 0.26			Running on: 01/05/23 09:37:53 Dilution: 10 Reagent: 120722.08 Consumables: 210414634; MKCN	10005- CE0123- D1KB	214270	Batch	Date: 01/	U4/23 09:52:32	
ND 1.3 ND	ND 0.26			Dilution: 10 Reagent: 120722.08 Consumables: 210414634; MKCN	10005- CE0123- D1KB	14270				
1.3 ND	0.26			Reagent: 120722.08 Consumables: 210414634; MKCN	0005- CE0123- D1KB	14270				
ND					0005 · CE0123 · D1KB	1/270				
	ND				19995, CL0125, NIKD	114210				
				Pipette : N/A						
0.455	0.091			Terpenoid testing is performed utilizing	g Gas Chromatography	Mass Spect	trometry.			
< 0.1	< 0.02			/ / /						
ND	ND									
ND	ND									
ND	ND									
ND	ND									
ND	ND									
ND	ND									
ND	ND									
ND	ND									
ND	ND									
0.415	0.083			// //						
1.03	0.206									
0.1	0.02									
	ND ND ND ND 0.415 1.03	ND 1.03 0.206	ND N	ND N	ND N	ND N	ND N	ND N	ND N	ND N

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo

Lab Director

ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

01/06/23

Kaycha Labs

Super Glue x Grape Diamond Lilac Diesel Cartridge Concentrate 0.5g Super Glue x Grape Diamond Lilac Diesel

Matrix : Derivative

Certificate of Analysis

PASSED

FLUENT

82 NE 26th street Miami, FL, 33137, US **Telephone:** (305) 900-6266 Email: Taylor.Jones@getfluent.com Sample : DA30104004-006

Harvest/Lot ID: 9938 4935 3989 4217

Batch#: 9938 4935 3989

Sampled: 01/03/23 Ordered: 01/03/23 Sample Size Received: 15.5 gram

Total Amount: 2849 units Completed: 01/06/23 Expires: 01/06/24

Sample Method : SOP.T.20.010

Page 3 of 6

Pesticides

PASSED

Pesticide	LOD	Units	Action Level	Pass/Fail	Result	Pesticide		LOD	Units	Action Level	Pass/Fail	Resu
OTAL CONTAMINANT LOAD (PESTICIDES)	0.01	ppm	5	PASS	ND	OXAMYL		0.01	ppm	0.5	PASS	ND
OTAL DIMETHOMORPH	0.01	ppm	0.2	PASS	ND	PACLOBUTRAZOL		0.01	ppm	0.1	PASS	ND
OTAL PERMETHRIN	0.01	ppm	0.1	PASS	ND	PHOSMET		0.01	maa	0.1	PASS	ND
OTAL PYRETHRINS	0.01	ppm	0.5	PASS	ND	PIPERONYL BUTOXIDE		0.01	ppm	3	PASS	ND
OTAL SPINETORAM	0.01	ppm	0.2	PASS	ND					-		
OTAL SPINOSAD	0.01	ppm	0.1	PASS	ND	PRALLETHRIN		0.01	ppm	0.1	PASS	ND
BAMECTIN B1A	0.01	ppm	0.1	PASS	ND	PROPICONAZOLE		0.01	ppm	0.1	PASS	ND
СЕРНАТЕ	0.01	ppm	0.1	PASS	ND	PROPOXUR		0.01	ppm	0.1	PASS	ND
CEQUINOCYL	0.01	ppm	0.1	PASS	ND	PYRIDABEN		0.01	ppm	0.2	PASS	ND
CETAMIPRID	0.01	ppm	0.1	PASS	ND	SPIROMESIFEN		0.01	ppm	0.1	PASS	ND
LDICARB	0.01	ppm	0.1	PASS	ND	SPIROTETRAMAT		0.01	ppm	0.1	PASS	ND
ZOXYSTROBIN	0.01	ppm	0.1	PASS	ND	SPIROXAMINE		0.01	ppm	0.1	PASS	ND
FENAZATE	0.01	ppm	0.1	PASS	ND	TEBUCONAZOLE		0.01	ppm	0.1	PASS	ND
FENTHRIN	0.01	ppm	0.1	PASS	ND	THIACLOPRID		0.01	ppm	0.1	PASS	ND
OSCALID	0.01	ppm	0.1	PASS	ND				7' 1 / 1	0.1		
ARBARYL	0.01	ppm	0.5	PASS	ND	THIAMETHOXAM		0.01	ppm		PASS	ND
ARBOFURAN	0.01	ppm	0.1	PASS	ND	TRIFLOXYSTROBIN		0.01	ppm	0.1	PASS	ND
HLORANTRANILIPROLE	0.01	ppm	1	PASS	ND	PENTACHLORONITROBENZEN	E (PCNB) *	0.01	PPM	0.15	PASS	ND
HLORMEQUAT CHLORIDE	0.01	ppm	1	PASS	ND	PARATHION-METHYL *		0.01	PPM	0.1	PASS	ND
HLORPYRIFOS	0.01	ppm	0.1	PASS	ND	CAPTAN *		0.07	PPM	0.7	PASS	ND
LOFENTEZINE	0.01	ppm	0.2	PASS	ND	CHLORDANE *		0.01	PPM	0.1	PASS	ND
DUMAPHOS	0.01	ppm	0.1	PASS	ND	CHLORFENAPYR *		0.01	PPM	0.1	PASS	ND
AMINOZIDE	0.01	ppm	0.1	PASS	ND	CYFLUTHRIN *		0.05	PPM	0.5	PASS	ND
AZINON	0.01	ppm	0.1	PASS	ND	CYPERMETHRIN *		0.05	PPM	0.5	PASS	ND
CHLORVOS	0.01	ppm	0.1	PASS	ND		-A			/		
METHOATE	0.01	ppm	0.1	PASS	ND	Analyzed by: 585, 3379, 53, 1440	Weight: 0.2764q		raction dat 04/23 12:16		Extracte 450,585	d by:
THOPROPHOS	0.01	ppm	0.1	PASS	ND	Analysis Method : SOP.T.30.10						Cainas
TOFENPROX	0.01	ppm	0.1	PASS	ND	SOP.T.40.102.FL (Davie)	I.FL (Gairlesville	e), 30P.1	.30.102.FL	(Davie), SUP	.1.40.101.FL (Gairies
TOXAZOLE	0.01	ppm	0.1	PASS	ND	Analytical Batch : DA054246PE	S		Reviewed	On:01/05/2	3 12:53:57	
NHEXAMID	0.01	ppm	0.1	PASS	ND	Instrument Used : DA-LCMS-00	3 (PES)		Batch Da	te:01/04/23	08:49:02	
NOXYCARB	0.01	ppm	0.1	PASS	ND	Running on: 01/04/23 13:47:08	3					
NPYROXIMATE	0.01	ppm	0.1	PASS	ND	Dilution: 250						
PRONIL	0.01	mag	0.1	PASS	ND	Reagent: 010323.R11; 122322	.R05; 122722.R	21; 010	423.R01; 0	92820.59		
LONICAMID	0.01	ppm	0.1	PASS	ND	Consumables: 6676024-02 Pipette: DA-093; DA-094; DA-2	10					
LUDIOXONIL	0.01	ppm	0.1	PASS	ND			na Liauia	Chromoto	wanhu Trinla	Ougdrupala Ma	
EXYTHIAZOX	0.01	ppm	0.1	PASS	ND	Testing for agricultural agents is Spectrometry in accordance with			CHIOHIATO	угарпу ппріе-	Quadrupole Ma	155
IAZALIL	0.01	ppm	0.1	PASS	ND	Analyzed by:	Weight:		Extraction	date:	Extracte	d bv:
IIDACLOPRID	0.01	ppm	0.4	PASS	ND	450, 53, 1440, 585	0.2764g		N/A		450	, .
RESOXIM-METHYL	0.01	ppm	0.1	PASS	ND	Analysis Method: SOP.T.30.15	1.FL (Gainesville	e), SOP.T	.30.151A.F	L (Davie), SO	P.T.40.151.FL	
ALATHION	0.01	ppm	0.2	PASS	ND	Analytical Batch : DA054248V0)L	Re	eviewed O	n:01/05/23 1	2:56:59	
ETALAXYL	0.01	ppm	0.1	PASS	ND	Instrument Used : DA-GCMS-00)6	Ba	atch Date	:01/04/23 09	03:42	
THIOCARB	0.01	ppm	0.1	PASS	ND	Running on : N/A						
ETHOMYL	0.01	ppm	0.1	PASS	ND	Dilution: 25	E0. 120122 DC	7, 1200	22 024			
EVINPHOS	0.01	ppm	0.1	PASS	ND	Reagent: 122322.R05; 092820 Consumables: 6676024-02; 14		7, 1206	ZZ.KZ4			
YCLOBUTANIL	0.01	ppm	0.1	PASS	ND	Pipette : DA-080; DA-146	1,77401					
ALED	0.01	ppm	0.25	PASS	ND	Testing for agricultural agents is in accordance with F.S. Rule 64EF		ng Gas C	hromatogra	aphy Triple-Qu	adrupole Mass	Spectr

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo

Lab Director

ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

01/06/23

Kaycha Labs

Super Glue x Grape Diamond Lilac Diesel Cartridge Concentrate 0.5g Super Glue x Grape Diamond Lilac Diesel

Matrix : Derivative

Certificate of Analysis

PASSED

FLUENT

82 NE 26th street Miami, FL, 33137, US Telephone: (305) 900-6266 Email: Taylor.Jones@getfluent.com

DAVIE, FL, 33314, US

Sample : DA30104004-006

Harvest/Lot ID: 9938 4935 3989 4217

Batch#: 9938 4935 3989

Sampled: 01/03/23 Ordered: 01/03/23 Sample Size Received: 15.5 gram Total Amount: 2849 units

Completed: 01/06/23 Expires: 01/06/24 Sample Method: SOP.T.20.010

Page 4 of 6

Residual Solvents

PASSED

Solvents	LOD	Units	Action Level	Pass/Fail	Result
1,1-DICHLOROETHENE	0.8	ppm	8	PASS	ND
1,2-DICHLOROETHANE	0.2	ppm	2	PASS	ND
2-PROPANOL	50	ppm	500	PASS	ND
ACETONE	75	ppm	750	PASS	ND
ACETONITRILE	6	ppm	60	PASS	ND
BENZENE	0.1	ppm	1	PASS	ND
BUTANES (N-BUTANE)	500	ppm	5000	PASS	ND
CHLOROFORM	0.2	ppm	2	PASS	ND
DICHLOROMETHANE	12.5	ppm	125	PASS	ND
ETHANOL	500	ppm	5000	PASS	ND
ETHYL ACETATE	40	ppm	400	PASS	ND
ETHYL ETHER	50	ppm	500	PASS	ND
ETHYLENE OXIDE	0.5	ppm	5	PASS	ND
HEPTANE	500	ppm	5000	PASS	ND
METHANOL	25	ppm	250	PASS	ND
N-HEXANE	25	ppm	250	PASS	ND
PENTANES (N-PENTANE)	75	ppm	750	PASS	ND
PROPANE	500	ppm	5000	PASS	ND
TOLUENE	15	ppm	150	PASS	ND
TOTAL XYLENES	15	ppm	150	PASS	ND
TRICHLOROETHYLENE	2.5	ppm	25	PASS	ND
Analyzed by:	Weight:	Extraction date:	1/1//	// // \	Extracted by:

01/04/23 15:55:29

Analysis Method : SOP.T.40.041.FL Analytical Batch : DA054303SOL Instrument Used : DA-GCMS-003 **Running on:** 01/05/23 14:46:08

Reviewed On: 01/05/23 15:23:26 Batch Date: 01/04/23 13:34:10

Dilution: 1

850, 585, 1440

Reagent: 071420.56 Consumables: R2017.167; KF140 Pipette: DA-309 25 uL Syringe 35028

Residual solvents analysis is performed utilizing Gas Chromatography Mass Spectrometry in accordance with with F.S. Rule 64ER20-39

0.0219g

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo

Lab Director

ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

850

01/06/23

Kaycha Labs

Super Glue x Grape Diamond Lilac Diesel Cartridge Concentrate 0.5g Super Glue x Grape Diamond Lilac Diesel

Matrix : Derivative

Certificate of Analysis

PASSED

82 NE 26th street Miami, FL, 33137, US Telephone: (305) 900-6266 Email: Taylor.Jones@getfluent.com Sample : DA30104004-006

Harvest/Lot ID: 9938 4935 3989 4217 Batch#: 9938 4935 3989

Sampled: 01/03/23 Ordered: 01/03/23 Sample Size Received: 15.5 gram Total Amount: 2849 units

Completed: 01/06/23 Expires: 01/06/24

Sample Method: SOP.T.20.010

Page 5 of 6

Microbial

Mycotoxins

PASSED

Analyte	LOD	Units	Result	Pass / Fail	Action Level
ESCHERICHIA COLI SHIGELLA	Α		Not Present	PASS	
SALMONELLA SPECIFIC GEN	E		Not Present	PASS	
ASPERGILLUS FLAVUS			Not Present	PASS	
ASPERGILLUS FUMIGATUS			Not Present	PASS	
ASPERGILLUS TERREUS			Not Present	PASS	
ASPERGILLUS NIGER			Not Present	PASS	
TOTAL YEAST AND MOLD	10	CFU/g	<10	PASS	100000
Analyzed by: Weight: 3390, 3621, 585, 1440 1.023g		Extraction 01/04/23		Extracte 3390	d by:

Analysis Method: SOP.T.40.056C, SOP.T.40.058.FL, SOP.T.40.209.FL Reviewed On: 01/06/23 11:29:57

Analytical Batch : DA054254MIC
Instrument Used : DA-265 Gene-UP RTPCR Running on: 01/04/23 12:02:05

Dilution: N/A

Reagent: 122122.R81; 100722.13

Consumables: 500124 Pipette: N/A

Analyzed by: 3336, 53, 1440 Extraction date: Extracted by: 01/04/23 12:17:28 0.978g 3390.3336

Analysis Method: SOP.T.40.208 (Gainesville), SOP.T.40.209.FL

Analytical Batch : DA054295TYM Instrument Used : Incubator (25-27C) DA-097 Running on: 01/04/23 12:45:06

Reviewed On: 01/06/23 11:55:19 Batch Date: 01/04/23 12:02:50

Batch Date: 01/04/23 09:27:27

Dilution: 10 Reagent: 092022.42 Consumables: 004103 Pipette: N/A

Total yeast and mold testing is performed utilizing MPN and traditional culture based techniques in accordance with F.S. Rule 64ER20-39.

Analyte		LOD	Units	Result	Pass / Fail	Action Level
AFLATOXIN B2		0.002	ppm	ND	PASS	0.02
AFLATOXIN B1		0.002	ppm	ND	PASS	0.02
OCHRATOXIN A		0.002	ppm	ND	PASS	0.02
AFLATOXIN G1		0.002	ppm	ND	PASS	0.02
AFLATOXIN G2		0.002	ppm	ND	PASS	0.02
Analyzed by: 585, 3379, 53, 1440	Weight: 0.2764g	Extract N/A	tion date:		xtracted k	y:

Analysis Method: SOP.T.30.101.FL (Gainesville), SOP.T.40.101.FL (Gainesville),

SOP.T.30.102.FL (Davie), SOP.T.40.102.FL (Davie)

Analytical Batch: DA054247MYC Reviewed On: 01/05/23 12:06:04

Instrument Used : DA-LCMS-003 (MYC) Running on: 01/04/23 13:47:18

Dilution: 250

Reagent: 010323.R11; 122322.R05; 122722.R21; 010423.R01; 092820.59

Consumables: 6676024-02

Pipette: DA-093; DA-094; DA-219

 $My cotoxins\ testing\ utilizing\ Liquid\ Chromatography\ with\ Triple-Quadrupole\ Mass\ Spectrometry\ in\ accordance\ with\ F.S.\ Rule\ 64ER20-39.$

Heavy Metals

PASSED

Metal		LOD	Units	Result	Pass / Fail	Action Level
TOTAL CONTAMINANT LOA	D METALS	0.11	ppm	ND	PASS	1.1
ARSENIC		0.02	ppm	ND	PASS	0.2
CADMIUM		0.02	ppm	ND	PASS	0.2
LEAD		0.05	ppm	ND	PASS	0.5
MERCURY		0.02	ppm	ND	PASS	0.2
Analyzed by: 1022, 53, 1440, 585	Weight: 0.5252g	Extraction 01/04/23			Extracte 3619	d by:

Analysis Method: SOP.T.30.082.FL, SOP.T.40.082.FL

Analytical Batch : DA054257HEA Instrument Used : DA-ICPMS-003 Running on: 01/04/23 14:57:49

Reviewed On: 01/05/23 12:33:26 Batch Date: 01/04/23 09:43:18

Batch Date : 01/04/23 09:03:39

Reagent: 122822.R42; 123022.R14; 122722.R07; 122922.R02; 122722.R05; 122722.R06;

122322.R25; 123022.R15; 100622.35 Consumables: 179436; 210508058; 210803-059 Pipette: DA-061; DA-106; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

01/06/23

Kaycha Labs

Super Glue x Grape Diamond Lilac Diesel Cartridge Concentrate 0.5g Super Glue x Grape Diamond Lilac Diesel

Matrix : Derivative

Certificate of Analysis

FLUENT

82 NE 26th street Miami, FL, 33137, US Telephone: (305) 900-6266 Email: Taylor.Jones@getfluent.com Sample : DA30104004-006

Harvest/Lot ID: 9938 4935 3989 4217

Batch#: 9938 4935 3989

Sampled: 01/03/23 Ordered: 01/03/23

Reviewed On: 01/04/23 19:58:49 **Batch Date:** 01/04/23 19:32:45

Reviewed On: 01/04/23 19:35:36

Batch Date: 01/04/23 11:01:23

Sample Size Received: 15.5 gram

Total Amount: 2849 units Completed: 01/06/23 Expires: 01/06/24

Sample Method: SOP.T.20.010

PASSED

Page 6 of 6

Filth/Foreign Material

PASSED

LOD Analyte Units Result P/F Action Level Filth and Foreign Material 0.5 % ND PASS

Extraction date: Extracted by: NA N/A

Analysis Method: SOP.T.40.090

Analytical Batch: DA054310FIL Instrument Used: Filth/Foreign Material Microscope

Running on: 01/04/23 19:41:59

Dilution: N/A Reagent: N/A Consumables : N/A Pipette: N/A

Filth and foreign material inspection is performed by visual inspection utilizing naked eye and microscope technologies in accordance with F.S. Rule 64ER20-39.

Water Activity

PASSED

Analyte	LO	_	Units	Result	P/F	Action Leve
Water Activity	0.:		aw	0.487	PASS	0.85
Analyzed by: 2926, 1879, 1440	Weight: 0.595g		extraction 01/04/23 1			ctracted by:

Analysis Method : SOP.T.40.019
Analytical Batch : DA054288WAT

Instrument Used : DA-028 Rotronic Hygropalm

Running on : 01/04/23 14:06:30

Dilution : N/A Reagent: 100522.08 Consumables: PS-14 Pipette : N/A

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo

Lab Director

ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

01/06/23